Goto

Collaborating Authors

 Enhong Chen


Neural Architecture Optimization

Neural Information Processing Systems

Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space.


Efficient Pure Exploration in Adaptive Round model

Neural Information Processing Systems

In the adaptive setting, many multi-armed bandit applications allow the learner to adaptively draw samples and adjust sampling strategy in rounds. In many real applications, not only the query complexity but also the round complexity need to be optimized. In this paper, we study both PAC and exact top-k arm identification problems and design efficient algorithms considering both round complexity and query complexity.


Efficient Pure Exploration in Adaptive Round model

Neural Information Processing Systems

In the adaptive setting, many multi-armed bandit applications allow the learner to adaptively draw samples and adjust sampling strategy in rounds. In many real applications, not only the query complexity but also the round complexity need to be optimized. In this paper, we study both PAC and exact top-k arm identification problems and design efficient algorithms considering both round complexity and query complexity.


Neural Architecture Optimization

Neural Information Processing Systems

Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space.