Engelbrecht, Jacob
Hidden Markov Models for Human Genes
Baldi, Pierre, Brunak, Søren, Chauvin, Yves, Engelbrecht, Jacob, Krogh, Anders
We apply HMMs to the problem of modeling exons, intronsand detecting splice sites in the human genome. Our most interesting result so far is the detection of particular oscillatory patterns,with a minimal period ofroughly 10 nucleotides, that seem to be characteristic of exon regions and may have significant biological implications.
Hidden Markov Models for Human Genes
Baldi, Pierre, Brunak, Søren, Chauvin, Yves, Engelbrecht, Jacob, Krogh, Anders
Human genes are not continuous but rather consist of short coding regions (exons) interspersed with highly variable non-coding regions (introns). We apply HMMs to the problem of modeling exons, introns and detecting splice sites in the human genome. Our most interesting result so far is the detection of particular oscillatory patterns, with a minimal period ofroughly 10 nucleotides, that seem to be characteristic of exon regions and may have significant biological implications.