Goto

Collaborating Authors

 Elsayed, Tamer


Can Large Language Models Automatically Score Proficiency of Written Essays?

arXiv.org Artificial Intelligence

Although several methods were proposed to address the problem of automated essay scoring (AES) in the last 50 years, there is still much to desire in terms of effectiveness. Large Language Models (LLMs) are transformer-based models that demonstrate extraordinary capabilities on various tasks. In this paper, we test the ability of LLMs, given their powerful linguistic knowledge, to analyze and effectively score written essays. We experimented with two popular LLMs, namely ChatGPT and Llama. We aim to check if these models can do this task and, if so, how their performance is positioned among the state-of-the-art (SOTA) models across two levels, holistically and per individual writing trait. We utilized prompt-engineering tactics in designing four different prompts to bring their maximum potential to this task. Our experiments conducted on the ASAP dataset revealed several interesting observations. First, choosing the right prompt depends highly on the model and nature of the task. Second, the two LLMs exhibited comparable average performance in AES, with a slight advantage for ChatGPT. Finally, despite the performance gap between the two LLMs and SOTA models in terms of predictions, they provide feedback to enhance the quality of the essays, which can potentially help both teachers and students.


Detecting Stance of Authorities towards Rumors in Arabic Tweets: A Preliminary Study

arXiv.org Artificial Intelligence

A myriad of studies addressed the problem of rumor verification in Twitter by either utilizing evidence from the propagation networks or external evidence from the Web. However, none of these studies exploited evidence from trusted authorities. In this paper, we define the task of detecting the stance of authorities towards rumors in tweets, i.e., whether a tweet from an authority agrees, disagrees, or is unrelated to the rumor. We believe the task is useful to augment the sources of evidence utilized by existing rumor verification systems. We construct and release the first Authority STance towards Rumors (AuSTR) dataset, where evidence is retrieved from authority timelines in Arabic Twitter. Due to the relatively limited size of our dataset, we study the usefulness of existing datasets for stance detection in our task. We show that existing datasets are somewhat useful for the task; however, they are clearly insufficient, which motivates the need to augment them with annotated data constituting stance of authorities from Twitter.


Catch Me If You Can: Deceiving Stance Detection and Geotagging Models to Protect Privacy of Individuals on Twitter

arXiv.org Artificial Intelligence

The recent advances in natural language processing have yielded many exciting developments in text analysis and language understanding models; however, these models can also be used to track people, bringing severe privacy concerns. In this work, we investigate what individuals can do to avoid being detected by those models while using social media platforms. We ground our investigation in two exposure-risky tasks, stance detection and geotagging. We explore a variety of simple techniques for modifying text, such as inserting typos in salient words, paraphrasing, and adding dummy social media posts. Our experiments show that the performance of BERT-based models fined tuned for stance detection decreases significantly due to typos, but it is not affected by paraphrasing. Moreover, we find that typos have minimal impact on state-of-the-art geotagging models due to their increased reliance on social networks; however, we show that users can deceive those models by interacting with different users, reducing their performance by almost 50%.


Overview of the CLEF-2019 CheckThat!: Automatic Identification and Verification of Claims

arXiv.org Artificial Intelligence

We present an overview of the second edition of the CheckThat! Lab at CLEF 2019. The lab featured two tasks in two different languages: English and Arabic. Task 1 (English) challenged the participating systems to predict which claims in a political debate or speech should be prioritized for fact-checking. Task 2 (Arabic) asked to (A) rank a given set of Web pages with respect to a check-worthy claim based on their usefulness for fact-checking that claim, (B) classify these same Web pages according to their degree of usefulness for fact-checking the target claim, (C) identify useful passages from these pages, and (D) use the useful pages to predict the claim's factuality. CheckThat! provided a full evaluation framework, consisting of data in English (derived from fact-checking sources) and Arabic (gathered and annotated from scratch) and evaluation based on mean average precision (MAP) and normalized discounted cumulative gain (nDCG) for ranking, and F1 for classification. A total of 47 teams registered to participate in this lab, and fourteen of them actually submitted runs (compared to nine last year). The evaluation results show that the most successful approaches to Task 1 used various neural networks and logistic regression. As for Task 2, learning-to-rank was used by the highest scoring runs for subtask A, while different classifiers were used in the other subtasks. We release to the research community all datasets from the lab as well as the evaluation scripts, which should enable further research in the important tasks of check-worthiness estimation and automatic claim verification.


Automated Fact-Checking for Assisting Human Fact-Checkers

arXiv.org Artificial Intelligence

The reporting and analysis of current events around the globe has expanded from professional, editor-lead journalism all the way to citizen journalism. Politicians and other key players enjoy direct access to their audiences through social media, bypassing the filters of official cables or traditional media. However, the multiple advantages of free speech and direct communication are dimmed by the misuse of the media to spread inaccurate or misleading claims. These phenomena have led to the modern incarnation of the fact-checker -- a professional whose main aim is to examine claims using available evidence to assess their veracity. As in other text forensics tasks, the amount of information available makes the work of the fact-checker more difficult. With this in mind, starting from the perspective of the professional fact-checker, we survey the available intelligent technologies that can support the human expert in the different steps of her fact-checking endeavor. These include identifying claims worth fact-checking; detecting relevant previously fact-checked claims; retrieving relevant evidence to fact-check a claim; and actually verifying a claim. In each case, we pay attention to the challenges in future work and the potential impact on real-world fact-checking.


Annotator Rationales for Labeling Tasks in Crowdsourcing

Journal of Artificial Intelligence Research

When collecting item ratings from human judges, it can be difficult to measure and enforce data quality due to task subjectivity and lack of transparency into how judges make each rating decision. To address this, we investigate asking judges to provide a specific form of rationale supporting each rating decision. We evaluate this approach on an information retrieval task in which human judges rate the relevance of Web pages for different search topics. Cost-benefit analysis over 10,000 judgments collected on Amazon's Mechanical Turk suggests a win-win. Firstly, rationales yield a multitude of benefits: more reliable judgments, greater transparency for evaluating both human raters and their judgments, reduced need for expert gold, the opportunity for dual-supervision from ratings and rationales, and added value from the rationales themselves. Secondly, once experienced in the task, crowd workers provide rationales with almost no increase in task completion time. Consequently, we can realize the above benefits with minimal additional cost.


Predicting Author Blog Channels with High Value Future Posts for Monitoring

AAAI Conferences

The phenomenal growth of social media, both in scale and importance, has created a unique opportunity to track information diffusion and the spread of influence, but can also make efficient tracking difficult. Given data streams representing blog posts on multiple blog channels and a focal query post on some topic of interest, our objective is to predict which of those channels are most likely to contain a future post that is relevant, or similar, to the focal query post. We denote this task as the future author prediction problem (FAPP). This problem has applications in information diffusion for brand monitoring and blog channel personalization and recommendation. We develop prediction methods inspired by (naive) information retrieval approaches that use historical posts in the blog channel for prediction. We also train a ranking support vector machine (SVM) to solve the problem. We evaluate our methods on an extensive social media dataset; despite the difficulty of the task, all methods perform reasonably well. Results show that ranking SVM prediction can exploit blog channel and diffusion characteristics to improve prediction accuracy. Moreover, it is surprisingly good for prediction in emerging topics and identifying inconsistent authors.