Elnagar, Ashraf
Multilingual and Explainable Text Detoxification with Parallel Corpora
Dementieva, Daryna, Babakov, Nikolay, Ronen, Amit, Ayele, Abinew Ali, Rizwan, Naquee, Schneider, Florian, Wang, Xintong, Yimam, Seid Muhie, Moskovskiy, Daniil, Stakovskii, Elisei, Kaufman, Eran, Elnagar, Ashraf, Mukherjee, Animesh, Panchenko, Alexander
Even with various regulations in place across countries and social media platforms (Government of India, 2021; European Parliament and Council of the European Union, 2022, digital abusive speech remains a significant issue. One potential approach to address this challenge is automatic text detoxification, a text style transfer (TST) approach that transforms toxic language into a more neutral or non-toxic form. To date, the availability of parallel corpora for the text detoxification task (Logachevavet al., 2022; Atwell et al., 2022; Dementievavet al., 2024a) has proven to be crucial for state-of-the-art approaches. With this work, we extend parallel text detoxification corpus to new languages -- German, Chinese, Arabic, Hindi, and Amharic -- testing in the extensive multilingual setup TST baselines. Next, we conduct the first of its kind an automated, explainable analysis of the descriptive features of both toxic and non-toxic sentences, diving deeply into the nuances, similarities, and differences of toxicity and detoxification across 9 languages. Finally, based on the obtained insights, we experiment with a novel text detoxification method inspired by the Chain-of-Thoughts reasoning approach, enhancing the prompting process through clustering on relevant descriptive attributes.
Augmenting Character Designers Creativity Using Generative Adversarial Networks
Lataifeh, Mohammad, Carrasco, Xavier, Elnagar, Ashraf, Ahmed, Naveed
Recent advances in Generative Adversarial Networks (GANs) continue to attract the attention of researchers in different fields due to the wide range of applications devised to take advantage of their key features. Most recent GANs are focused on realism; however, generating hyper-realistic output is not a priority for some domains, as in the case of this work. The generated outcomes are used here as cognitive components to augment character designers' creativity while conceptualizing new characters for different multimedia projects. To select the best-suited GANs for such a creative context, we first present a comparison between different GAN architectures and their performance when trained from scratch on a new visual character's dataset using a single Graphics Processing Unit (GPU). We also explore alternative techniques, such as transfer learning and data augmentation, to overcome computational resource limitations, a challenge faced by many researchers in the domain. Additionally, mixed methods are used to evaluate the cognitive value of the generated visuals on character designers' agency conceptualizing new characters. The results discussed proved highly effective for this context, as demonstrated by early adaptations to the characters' design process. As an extension for this work, the presented approach will be further evaluated as a novel co-design process between humans and machines to investigate where and how the generated concepts are interacting with and influencing the design process outcome.