Goto

Collaborating Authors

 Elliott, Hunter


Bayesian Optimization of Antibodies Informed by a Generative Model of Evolving Sequences

arXiv.org Machine Learning

To build effective therapeutics, biologists iteratively mutate antibody sequences to improve binding and stability. Proposed mutations can be informed by previous measurements or by learning from large antibody databases to predict only typical antibodies. Unfortunately, the space of typical antibodies is enormous to search, and experiments often fail to find suitable antibodies on a budget. We introduce Clone-informed Bayesian Optimization (CloneBO), a Bayesian optimization procedure that efficiently optimizes antibodies in the lab by teaching a generative model how our immune system optimizes antibodies. Our immune system makes antibodies by iteratively evolving specific portions of their sequences to bind their target strongly and stably, resulting in a set of related, evolving sequences known as a clonal family. We train a large language model, CloneLM, on hundreds of thousands of clonal families and use it to design sequences with mutations that are most likely to optimize an antibody within the human immune system. We propose to guide our designs to fit previous measurements with a twisted sequential Monte Carlo procedure. We show that CloneBO optimizes antibodies substantially more efficiently than previous methods in realistic in silico experiments and designs stronger and more stable binders in in vitro wet lab experiments.


Generative Humanization for Therapeutic Antibodies

arXiv.org Artificial Intelligence

Antibody therapies have been employed to address some of today's most challenging diseases, but must meet many criteria during drug development before reaching a patient. Humanization is a sequence optimization strategy that addresses one critical risk called immunogenicity -- a patient's immune response to the drug -- by making an antibody more'human-like' in the absence of a predictive lab-based test for immunogenicity. However, existing humanization strategies generally yield very few humanized candidates, which may have degraded biophysical properties or decreased drug efficacy. Here, we re-frame humanization as a conditional generative modeling task, where humanizing mutations are sampled from a language model trained on human antibody data. We describe a sampling process that incorporates models of therapeutic attributes, such as antigen binding affinity, to obtain candidate sequences that have both reduced immunogenicity risk and maintained or improved therapeutic properties, allowing this algorithm to be readily embedded into an iterative antibody optimization campaign. We demonstrate in silico and in lab validation that in real therapeutic programs our generative humanization method produces diverse sets of antibodies that are both (1) highly-human and (2) have favorable therapeutic properties, such as improved binding to target antigens. Antibodies are the fastest growing drug class, with approved molecules treating a breadth of disorders ranging from cancer to autoimmune disease to infectious disease (Carter & Lazar, 2018). Many candidate therapeutic antibodies are derived from non-human e.g., murine or camelid sources, and modern antibody formats such as multi-specifics or antibody-drug conjugates can require heavy sequence engineering after discovery. This increases the risk of immunogenicity, where Anti-Drug Antibodies (ADAs) result in either fast clearance of the drug or adverse events (Hwang & Foote, 2005). While antibody sequence humanness is only roughly correlated with immunogenicity, humanization is widely employed to decrease immunogenicity risk (Prihoda et al., 2022).


Exploring Complex Dynamical Systems via Nonconvex Optimization

arXiv.org Artificial Intelligence

Cataloging the complex behaviors of dynamical systems can be challenging, even when they are well-described by a simple mechanistic model. If such a system is of limited analytical tractability, brute force simulation is often the only resort. We present an alternative, optimization-driven approach using tools from machine learning. We apply this approach to a novel, fully-optimizable, reaction-diffusion model which incorporates complex chemical reaction networks (termed "Dense Reaction-Diffusion Network" or "Dense RDN"). This allows us to systematically identify new states and behaviors, including pattern formation, dissipation-maximizing nonequilibrium states, and replication-like dynamical structures.