Eleftheriou, Evangelos
KurTail : Kurtosis-based LLM Quantization
Akhondzadeh, Mohammad Sadegh, Bojchevski, Aleksandar, Eleftheriou, Evangelos, Dazzi, Martino
One of the challenges of quantizing a large language model (LLM) is the presence of outliers. Outliers often make uniform quantization schemes less effective, particularly in extreme cases such as 4-bit quantization. We introduce KurTail, a new post-training quantization (PTQ) scheme that leverages Kurtosis-based rotation to mitigate outliers in the activations of LLMs. Our method optimizes Kurtosis as a measure of tailedness. This approach enables the quantization of weights, activations, and the KV cache in 4 bits. We utilize layer-wise optimization, ensuring memory efficiency. KurTail outperforms existing quantization methods, offering a 13.3\% boost in MMLU accuracy and a 15.5\% drop in Wiki perplexity compared to QuaRot. It also outperforms SpinQuant with a 2.6\% MMLU gain and reduces perplexity by 2.9\%, all while reducing the training cost. For comparison, learning the rotation using SpinQuant for Llama3-70B requires at least four NVIDIA H100 80GB GPUs, whereas our method requires only a single GPU, making it a more accessible solution for consumer GPU.
EfQAT: An Efficient Framework for Quantization-Aware Training
Ashkboos, Saleh, Verhoef, Bram, Hoefler, Torsten, Eleftheriou, Evangelos, Dazzi, Martino
Quantization-aware training (QAT) schemes have been shown to achieve near-full precision accuracy. They accomplish this by training a quantized model for multiple epochs. This is computationally expensive, mainly because of the full precision backward pass. On the other hand, post-training quantization (PTQ) schemes do not involve training and are therefore computationally cheap, but they usually result in a significant accuracy drop. We address these challenges by proposing EfQAT, which generalizes both schemes by optimizing only a subset of the parameters of a quantized model. EfQAT starts by applying a PTQ scheme to a pre-trained model and only updates the most critical network parameters while freezing the rest, accelerating the backward pass. We demonstrate the effectiveness of EfQAT on various CNNs and Transformer-based models using different GPUs. Specifically, we show that EfQAT is significantly more accurate than PTQ with little extra compute. Furthermore, EfQAT can accelerate the QAT backward pass between 1.44-1.64x while retaining most accuracy.
Learning in Deep Neural Networks Using a Biologically Inspired Optimizer
Dellaferrera, Giorgia, Wozniak, Stanislaw, Indiveri, Giacomo, Pantazi, Angeliki, Eleftheriou, Evangelos
Plasticity circuits in the brain are known to be influenced by the distribution of the synaptic weights through the mechanisms of synaptic integration and local regulation of synaptic strength. However, the complex interplay of stimulation-dependent plasticity with local learning signals is disregarded by most of the artificial neural network training algorithms devised so far. Here, we propose a novel biologically inspired optimizer for artificial (ANNs) and spiking neural networks (SNNs) that incorporates key principles of synaptic integration observed in dendrites of cortical neurons: GRAPES (Group Responsibility for Adjusting the Propagation of Error Signals). GRAPES implements a weight-distribution dependent modulation of the error signal at each node of the neural network. We show that this biologically inspired mechanism leads to a systematic improvement of the convergence rate of the network, and substantially improves classification accuracy of ANNs and SNNs with both feedforward and recurrent architectures. Furthermore, we demonstrate that GRAPES supports performance scalability for models of increasing complexity and mitigates catastrophic forgetting by enabling networks to generalize to unseen tasks based on previously acquired knowledge. The local characteristics of GRAPES minimize the required memory resources, making it optimally suited for dedicated hardware implementations. Overall, our work indicates that reconciling neurophysiology insights with machine intelligence is key to boosting the performance of neural networks.
Online Spatio-Temporal Learning in Deep Neural Networks
Bohnstingl, Thomas, Woลบniak, Stanisลaw, Maass, Wolfgang, Pantazi, Angeliki, Eleftheriou, Evangelos
Biological neural networks are equipped with an inherent capability to continuously adapt through online learning. This aspect remains in stark contrast to learning with error backpropagation through time (BPTT) applied to recurrent neural networks (RNNs), or recently to biologically-inspired spiking neural networks (SNNs). BPTT involves offline computation of the gradients due to the requirement to unroll the network through time. Online learning has recently regained the attention of the research community, focusing either on approaches that approximate BPTT or on biologically-plausible schemes applied to SNNs. Here we present an alternative perspective that is based on a clear separation of spatial and temporal gradient components. Combined with insights from biology, we derive from first principles a novel online learning algorithm for deep SNNs, called online spatio-temporal learning (OSTL). For shallow networks, OSTL is gradient-equivalent to BPTT enabling for the first time online training of SNNs with BPTT-equivalent gradients. In addition, the proposed formulation unveils a class of SNN architectures trainable online at low time complexity. Moreover, we extend OSTL to a generic form, applicable to a wide range of network architectures, including networks comprising long short-term memory (LSTM) and gated recurrent units (GRU). We demonstrate the operation of our algorithm on various tasks from language modelling to speech recognition and obtain results on par with the BPTT baselines. The proposed algorithm provides a framework for developing succinct and efficient online training approaches for SNNs and in general deep RNNs.
Fatiguing STDP: Learning from Spike-Timing Codes in the Presence of Rate Codes
Moraitis, Timoleon, Sebastian, Abu, Boybat, Irem, Gallo, Manuel Le, Tuma, Tomas, Eleftheriou, Evangelos
Spiking neural networks (SNNs) could play a key role in unsupervised machine learning applications, by virtue of strengths related to learning from the fine temporal structure of event-based signals. However, some spike-timing-related strengths of SNNs are hindered by the sensitivity of spike-timing-dependent plasticity (STDP) rules to input spike rates, as fine temporal correlations may be obstructed by coarser correlations between firing rates. In this article, we propose a spike-timing-dependent learning rule that allows a neuron to learn from the temporally-coded information despite the presence of rate codes. Our long-term plasticity rule makes use of short-term synaptic fatigue dynamics. We show analytically that, in contrast to conventional STDP rules, our fatiguing STDP (FSTDP) helps learn the temporal code, and we derive the necessary conditions to optimize the learning process. We showcase the effectiveness of FSTDP in learning spike-timing correlations among processes of different rates in synthetic data. Finally, we use FSTDP to detect correlations in real-world weather data from the United States in an experimental realization of the algorithm that uses a neuromorphic hardware platform comprising phase-change memristive devices. Taken together, our analyses and demonstrations suggest that FSTDP paves the way for the exploitation of the spike-based strengths of SNNs in real-world applications.