Goto

Collaborating Authors

 Elbaz, Dan


Diverse Transformer Decoding for Offline Reinforcement Learning Using Financial Algorithmic Approaches

arXiv.org Artificial Intelligence

Offline Reinforcement Learning (RL) algorithms learn a policy using a fixed training dataset, which is then deployed online to interact with the environment and make decisions. Transformers, a standard choice for modeling time-series data, are gaining popularity in offline RL. In this context, Beam Search (BS), an approximate inference algorithm, is the go-to decoding method. Offline RL eliminates the need for costly or risky online data collection. However, the restricted dataset induces uncertainty as the agent may encounter unfamiliar sequences of states and actions during execution that were not covered in the training data. In this context, BS lacks two important properties essential for offline RL: It does not account for the aforementioned uncertainty, and its greedy left-right search approach often results in sequences with minimal variations, failing to explore potentially better alternatives. To address these limitations, we propose Portfolio Beam Search (PBS), a simple-yet-effective alternative to BS that balances exploration and exploitation within a Transformer model during decoding. We draw inspiration from financial economics and apply these principles to develop an uncertainty-aware diversification mechanism, which we integrate into a sequential decoding algorithm at inference time. We empirically demonstrate the effectiveness of PBS on the D4RL locomotion benchmark, where it achieves higher returns and significantly reduces outcome variability.


Wall Street Tree Search: Risk-Aware Planning for Offline Reinforcement Learning

arXiv.org Artificial Intelligence

Offline reinforcement-learning (RL) algorithms learn to make decisions using a given, fixed training dataset without online data collection. This problem setting is captivating because it holds the promise of utilizing previously collected datasets without any costly or risky interaction with the environment. However, this promise also bears the drawback of this setting as the restricted dataset induces uncertainty because the agent can encounter unfamiliar sequences of states and actions that the training data did not cover. To mitigate the destructive uncertainty effects, we need to balance the aspiration to take reward-maximizing actions with the incurred risk due to incorrect ones. In financial economics, modern portfolio theory (MPT) is a method that risk-averse investors can use to construct diversified portfolios that maximize their returns without unacceptable levels of risk. We propose integrating MPT into the agent's decision-making process, presenting a new simple-yet-highly-effective risk-aware planning algorithm for offline RL. Our algorithm allows us to systematically account for the \emph{estimated quality} of specific actions and their \emph{estimated risk} due to the uncertainty. We show that our approach can be coupled with the Transformer architecture to yield a state-of-the-art planner, which maximizes the return for offline RL tasks. Moreover, our algorithm reduces the variance of the results significantly compared to conventional Transformer decoding, which results in a much more stable algorithm -- a property that is essential for the offline RL setting, where real-world exploration and failures can be costly or dangerous.