Goto

Collaborating Authors

 Ekstrand, Michael


The Impossibility of Fair LLMs

arXiv.org Machine Learning

The need for fair AI is increasingly clear in the era of general-purpose systems such as ChatGPT, Gemini, and other large language models (LLMs). However, the increasing complexity of human-AI interaction and its social impacts have raised questions of how fairness standards could be applied. Here, we review the technical frameworks that machine learning researchers have used to evaluate fairness, such as group fairness and fair representations, and find that their application to LLMs faces inherent limitations. We show that each framework either does not logically extend to LLMs or presents a notion of fairness that is intractable for LLMs, primarily due to the multitudes of populations affected, sensitive attributes, and use cases. To address these challenges, we develop guidelines for the more realistic goal of achieving fairness in particular use cases: the criticality of context, the responsibility of LLM developers, and the need for stakeholder participation in an iterative process of design and evaluation. Moreover, it may eventually be possible and even necessary to use the general-purpose capabilities of AI systems to address fairness challenges as a form of scalable AI-assisted alignment.


Responsible AI Research Needs Impact Statements Too

arXiv.org Artificial Intelligence

All types of research, development, and policy work can have unintended, adverse consequences - work in responsible artificial intelligence (RAI), ethical AI, or ethics in AI is no exception.