Eickhoff, Carsten
Stable Anisotropic Regularization
Rudman, William, Eickhoff, Carsten
Given the success of Large Language Models (LLMs), there has been considerable interest in studying the properties of model activations. The literature overwhelmingly agrees that LLM representations are dominated by a few ``outlier dimensions'' with exceedingly high variance and magnitude. Several studies in Natural Language Processing (NLP) have sought to mitigate the impact of such outlier dimensions and force LLMs to be isotropic (i.e., have uniform variance across all dimensions in embedding space). Isotropy is thought to be a desirable property for LLMs that improves model performance and more closely aligns textual representations with human intuition. However, many of the claims regarding isotropy in NLP have been based on the average cosine similarity of embeddings, which has recently been shown to be a flawed measure of isotropy. In this paper, we propose I-STAR: IsoScore*-based STable Anisotropic Regularization, a novel regularization method that can be used to increase or decrease levels of isotropy in embedding space during training. I-STAR uses IsoScore*, the first accurate measure of isotropy that is both differentiable and stable on mini-batch computations. In contrast to several previous works, we find that decreasing isotropy in contextualized embeddings improves performance on the majority of tasks and models considered in this paper.
Parameter-efficient Modularised Bias Mitigation via AdapterFusion
Kumar, Deepak, Lesota, Oleg, Zerveas, George, Cohen, Daniel, Eickhoff, Carsten, Schedl, Markus, Rekabsaz, Navid
Large pre-trained language models contain societal biases and carry along these biases to downstream tasks. Current in-processing bias mitigation approaches (like adversarial training) impose debiasing by updating a model's parameters, effectively transferring the model to a new, irreversible debiased state. In this work, we propose a novel approach to develop stand-alone debiasing functionalities separate from the model, which can be integrated into the model on-demand, while keeping the core model untouched. Drawing from the concept of AdapterFusion in multi-task learning, we introduce DAM (Debiasing with Adapter Modules) - a debiasing approach to first encapsulate arbitrary bias mitigation functionalities into separate adapters, and then add them to the model on-demand in order to deliver fairness qualities. We conduct a large set of experiments on three classification tasks with gender, race, and age as protected attributes. Our results show that DAM improves or maintains the effectiveness of bias mitigation, avoids catastrophic forgetting in a multi-attribute scenario, and maintains on-par task performance, while granting parameter-efficiency and easy switching between the original and debiased models.
Neural Summarization of Electronic Health Records
Pal, Koyena, Bahrainian, Seyed Ali, Mercurio, Laura, Eickhoff, Carsten
Hospital discharge documentation is among the most essential, yet time-consuming documents written by medical practitioners. The objective of this study was to automatically generate hospital discharge summaries using neural network summarization models. We studied various data preparation and neural network training techniques that generate discharge summaries. Using nursing notes and discharge summaries from the MIMIC-III dataset, we studied the viability of the automatic generation of various sections of a discharge summary using four state-of-the-art neural network summarization models (BART, T5, Longformer and FLAN-T5). Our experiments indicated that training environments including nursing notes as the source, and discrete sections of the discharge summary as the target output (e.g. "History of Present Illness") improve language model efficiency and text quality. According to our findings, the fine-tuned BART model improved its ROUGE F1 score by 43.6% against its standard off-the-shelf version. We also found that fine-tuning the baseline BART model with other setups caused different degrees of improvement (up to 80% relative improvement). We also observed that a fine-tuned T5 generally achieves higher ROUGE F1 scores than other fine-tuned models and a fine-tuned FLAN-T5 achieves the highest ROUGE score overall, i.e., 45.6. For majority of the fine-tuned language models, summarizing discharge summary report sections separately outperformed the summarization the entire report quantitatively. On the other hand, fine-tuning language models that were previously instruction fine-tuned showed better performance in summarizing entire reports. This study concludes that a focused dataset designed for the automatic generation of discharge summaries by a language model can produce coherent Discharge Summary sections.
Linearly Mapping from Image to Text Space
Merullo, Jack, Castricato, Louis, Eickhoff, Carsten, Pavlick, Ellie
The extent to which text-only language models (LMs) learn to represent features of the non-linguistic world is an open question. Prior work has shown that pretrained LMs can be taught to caption images when a vision model's parameters are optimized to encode images in the language space. We test a stronger hypothesis: that the conceptual representations learned by frozen text-only models and vision-only models are similar enough that this can be achieved with a linear map. We show that the image representations from vision models can be transferred as continuous prompts to frozen LMs by training only a single linear projection. Using these to prompt the LM achieves competitive performance on captioning and visual question answering tasks compared to models that tune both the image encoder and text decoder (such as the MAGMA model). We compare three image encoders with increasing amounts of linguistic supervision seen during pretraining: BEIT (no linguistic information), NF-ResNET (lexical category information), and CLIP (full natural language descriptions). We find that all three encoders perform equally well at transferring visual property information to the language model (e.g., whether an animal is large or small), but that image encoders pretrained with linguistic supervision more saliently encode category information (e.g., distinguishing hippo vs. elephant) and thus perform significantly better on benchmark language-and-vision tasks. Our results indicate that LMs encode conceptual information structurally similarly to vision-based models, even those that are solely trained on images. Code is available here: https://github.com/jmerullo/limber
CroCoSum: A Benchmark Dataset for Cross-Lingual Code-Switched Summarization
Zhang, Ruochen, Eickhoff, Carsten
Cross-lingual summarization (CLS) has attracted increasing interest in recent years due to the availability of large-scale web-mined datasets and the advancements of multilingual language models. However, given the rareness of naturally occurring CLS resources, the majority of datasets are forced to rely on translation which can contain overly literal artifacts. This restricts our ability to observe naturally occurring CLS pairs that capture organic diction, including instances of code-switching. This alteration between languages in mid-message is a common phenomenon in multilingual settings yet has been largely overlooked in cross-lingual contexts due to data scarcity. To address this gap, we introduce CroCoSum, a dataset of cross-lingual code-switched summarization of technology news. It consists of over 24,000 English source articles and 18,000 human-curated Chinese news summaries, with more than 92% of the summaries containing code-switched phrases. For reference, we evaluate the performance of existing approaches including pipeline, end-to-end, and zero-shot methods. We show that leveraging existing resources as a pretraining step does not improve performance on CroCoSum, indicating the limited generalizability of existing resources. Finally, we discuss the challenges of evaluating cross-lingual summarizers on code-switched generation through qualitative error analyses. Our collection and code can be accessed at https://github.com/RosenZhang/CroCoSum.
Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG
Potter, ฤฐlkay Yฤฑldฤฑz, Zerveas, George, Eickhoff, Carsten, Duncan, Dominique
Epilepsy is one of the most common neurological disorders, typically observed via seizure episodes. Epileptic seizures are commonly monitored through electroencephalogram (EEG) recordings due to their routine and low expense collection. The stochastic nature of EEG makes seizure identification via manual inspections performed by highly-trained experts a tedious endeavor, motivating the use of automated identification. The literature on automated identification focuses mostly on supervised learning methods requiring expert labels of EEG segments that contain seizures, which are difficult to obtain. Motivated by these observations, we pose seizure identification as an unsupervised anomaly detection problem. To this end, we employ the first unsupervised transformer-based model for seizure identification on raw EEG. We train an autoencoder involving a transformer encoder via an unsupervised loss function, incorporating a novel masking strategy uniquely designed for multivariate time-series data such as EEG. Training employs EEG recordings that do not contain any seizures, while seizures are identified with respect to reconstruction errors at inference time. We evaluate our method on three publicly available benchmark EEG datasets for distinguishing seizure vs. non-seizure windows. Our method leads to significantly better seizure identification performance than supervised learning counterparts, by up to 16% recall, 9% accuracy, and 9% Area under the Receiver Operating Characteristics Curve (AUC), establishing particular benefits on highly imbalanced data. Through accurate seizure identification, our method could facilitate widely accessible and early detection of epilepsy development, without needing expensive label collection or manual feature extraction.
Garden-Path Traversal in GPT-2
Jurayj, William, Rudman, William, Eickhoff, Carsten
In recent years, large-scale transformer decoders such as the GPT-x family of models have become increasingly popular. Studies examining the behavior of these models tend to focus only on the output of the language modeling head and avoid analysis of the internal states of the transformer decoder. In this study, we present a collection of methods to analyze the hidden states of GPT-2 and use the model's navigation of garden path sentences as a case study. To enable this, we compile the largest currently available dataset of garden path sentences. We show that Manhattan distances and cosine similarities provide more reliable insights compared to established surprisal methods that analyze next-token probabilities computed by a language modeling head. Using these methods, we find that negating tokens have minimal impacts on the model's representations for unambiguous forms of sentences with ambiguity solely over what the object of a verb is, but have a more substantial impact of representations for unambiguous sentences Figure 1: Hidden state relations (Top: cosine similarity, whose ambiguity would stem from the voice Middle: Manhattan distance, Bottom: surprisal difference) of a verb. Further, we find that analyzing the between negated and non-negated forms of garden decoder model's hidden states reveals periods path and unambiguous sentences. The ambiguous of ambiguity that might conclude in a garden verb "walked" primes the effect later in the sentence, path effect but happen not to, whereas surprisal while the unambiguous "taken" avoids it. The verb "lit" analyses routinely miss this detail.
When BERT Fails -- The Limits of EHR Classification
Garcia-Agundez, Augusto, Eickhoff, Carsten
Transformers are powerful text representation learners, useful for all kinds of clinical decision support tasks. Although they outperform baselines on readmission prediction, they are not infallible. Here, we look into one such failure case, and report patterns that lead to inferior predictive performance. Introduction Transformers such as BERT have shown great potential for clinical decision support (e.g. In this work, we explore the predictive errors of one such task: predicting death of subendocardial infarction patients using early notes to construct a time series of contextual embeddings.
IsoScore: Measuring the Uniformity of Embedding Space Utilization
Rudman, William, Gillman, Nate, Rayne, Taylor, Eickhoff, Carsten
The recent success of distributed word representations has led to an increased interest in analyzing the properties of their spatial distribution. Several studies have suggested that contextualized word embedding models do not isotropically project tokens into vector space. However, current methods designed to measure isotropy, such as average random cosine similarity and the partition score, have not been thoroughly analyzed and are not appropriate for measuring isotropy. We propose IsoScore: a novel tool that quantifies the degree to which a point cloud uniformly utilizes the ambient vector space. Using rigorously designed tests, we demonstrate that IsoScore is the only tool available in the literature that accurately measures how uniformly distributed variance is across dimensions in vector space. Additionally, we use IsoScore to challenge a number of recent conclusions in the NLP literature that have been derived using brittle metrics of isotropy. We caution future studies from using existing tools to measure isotropy in contextualized embedding space as resulting conclusions will be misleading or altogether inaccurate.
CODER: An efficient framework for improving retrieval through COntextualized Document Embedding Reranking
Zerveas, George, Rekabsaz, Navid, Cohen, Daniel, Eickhoff, Carsten
We present a framework for improving the performance of a wide class of retrieval models at minimal computational cost. It utilizes precomputed document representations extracted by a base dense retrieval method and involves training a model to jointly score a large set of retrieved candidate documents for each query, while potentially transforming on the fly the representation of each document in the context of the other candidates as well as the query itself. When scoring a document representation based on its similarity to a query, the model is thus aware of the representation of its "peer" documents. We show that our approach leads to substantial improvement in retrieval performance over the base method and over scoring candidate documents in isolation from one another, as in a pair-wise training setting. Crucially, unlike term-interaction rerankers based on BERT-like encoders, it incurs a negligible computational overhead on top of any first-stage method at run time, allowing it to be easily combined with any state-of-the-art dense retrieval method. Finally, concurrently considering a set of candidate documents for a given query enables additional valuable capabilities in retrieval, such as score calibration and mitigating societal biases in ranking.