Eiben, Agoston E.
Lamarckian Inheritance Improves Robot Evolution in Dynamic Environments
Luo, Jie, Miras, Karine, Longhi, Carlo, Weissl, Oliver, Eiben, Agoston E.
This study explores the integration of Lamarckian system into evolutionary robotics (ER), comparing it with the traditional Darwinian model across various environments. By adopting Lamarckian principles, where robots inherit learned traits, alongside Darwinian learning without inheritance, we investigate adaptation in dynamic settings. Our research, conducted in six distinct environmental setups, demonstrates that Lamarckian systems outperform Darwinian ones in adaptability and efficiency, particularly in challenging conditions. Our analysis highlights the critical role of the interplay between controller \& morphological evolution and environment adaptation, with parent-offspring similarities and newborn \&survivors before and after learning providing insights into the effectiveness of trait inheritance. Our findings suggest Lamarckian principles could significantly advance autonomous system design, highlighting the potential for more adaptable and robust robotic solutions in complex, real-world applications. These theoretical insights were validated using real physical robots, bridging the gap between simulation and practical application.
A comparison of controller architectures and learning mechanisms for arbitrary robot morphologies
Luo, Jie, Tomczak, Jakub, Miras, Karine, Eiben, Agoston E.
The main question this paper addresses is: What combination of a robot controller and a learning method should be used, if the morphology of the learning robot is not known in advance? Our interest is rooted in the context of morphologically evolving modular robots, but the question is also relevant in general, for system designers interested in widely applicable solutions. We perform an experimental comparison of three controller-and-learner combinations: one approach where controllers are based on modelling animal locomotion (Central Pattern Generators, CPG) and the learner is an evolutionary algorithm, a completely different method using Reinforcement Learning (RL) with a neural network controller architecture, and a combination `in-between' where controllers are neural networks and the learner is an evolutionary algorithm. We apply these three combinations to a test suite of modular robots and compare their efficacy, efficiency, and robustness. Surprisingly, the usual CPG-based and RL-based options are outperformed by the in-between combination that is more robust and efficient than the other two setups.
Lamarck's Revenge: Inheritance of Learned Traits Can Make Robot Evolution Better
Luo, Jie, Miras, Karine, Tomczak, Jakub, Eiben, Agoston E.
Evolutionary robot systems offer two principal advantages: an advanced way of developing robots through evolutionary optimization and a special research platform to conduct what-if experiments regarding questions about evolution. Our study sits at the intersection of these. We investigate the question ``What if the 18th-century biologist Lamarck was not completely wrong and individual traits learned during a lifetime could be passed on to offspring through inheritance?'' We research this issue through simulations with an evolutionary robot framework where morphologies (bodies) and controllers (brains) of robots are evolvable and robots also can improve their controllers through learning during their lifetime. Within this framework, we compare a Lamarckian system, where learned bits of the brain are inheritable, with a Darwinian system, where they are not. Analyzing simulations based on these systems, we obtain new insights about Lamarckian evolution dynamics and the interaction between evolution and learning. Specifically, we show that Lamarckism amplifies the emergence of `morphological intelligence', the ability of a given robot body to acquire a good brain by learning, and identify the source of this success: `newborn' robots have a higher fitness because their inherited brains match their bodies better than those in a Darwinian system.
A Comparative Study of Brain Reproduction Methods for Morphologically Evolving Robots
Luo, Jie, Longhi, Carlo, Eiben, Agoston E.
In the most extensive robot evolution systems, both the bodies and the brains of the robots undergo evolution and the brains of 'infant' robots are also optimized by a learning process immediately after 'birth'. This paper is concerned with the brain evolution mechanism in such a system. In particular, we compare four options obtained by combining asexual or sexual brain reproduction with Darwinian or Lamarckian evolution mechanisms. We conduct experiments in simulation with a system of evolvable modular robots on two different tasks. The results show that sexual reproduction of the robots' brains is preferable in the Darwinian framework, but the effect is the opposite in the Lamarckian system (both using the same infant learning method). Our experiments suggest that the overall best option is asexual reproduction combined with the Lamarckian framework, as it obtains better robots in terms of fitness than the other three. Considering the evolved morphologies, the different brain reproduction methods do not lead to differences. This result indicates that the morphology of the robot is mainly determined by the task and the environment, not by the brain reproduction methods.
The Effects of Learning in Morphologically Evolving Robot Systems
Luo, Jie, Stuurman, Aart, Tomczak, Jakub M., Ellers, Jacintha, Eiben, Agoston E.
Simultaneously evolving morphologies (bodies) and controllers (brains) of robots can cause a mismatch between the inherited body and brain in the offspring. To mitigate this problem, the addition of an infant learning period by the so-called Triangle of Life framework has been proposed relatively long ago. However, an empirical assessment is still lacking to-date. In this paper we investigate the effects of such a learning mechanism from different perspectives. Using extensive simulations we show that learning can greatly increase task performance and reduce the number of generations required to reach a certain fitness level compared to the purely evolutionary approach. Furthermore, although learning only directly affects the controllers, we demonstrate that the evolved morphologies will be also different. This provides a quantitative demonstration that changes in the brain can induce changes in the body. Finally, we examine the concept of morphological intelligence quantified by the ability of a given body to learn. We observe that the learning delta, the performance difference between the inherited and the learned brain, is growing throughout the evolutionary process. This shows that evolution is producing robots with an increasing plasticity, that is, consecutive generations are becoming better and better learners which in turn makes them better and better at the given task. All in all, our results demonstrate that the Triangle of Life is not only a concept of theoretical interest, but a system architecture with practical benefits.
The Effects of Learning in Morphologically Evolving Robot Systems
Luo, Jie, Tomczak, Jakub M., Eiben, Agoston E.
When controllers (brains) and morphologies (bodies) of robots simultaneously evolve, this can lead to a problem, namely the brain & body mismatch problem. In this research, we propose a solution of lifetime learning. We set up a system where modular robots can create offspring that inherit the bodies of parents by recombination and mutation. With regards to the brains of the offspring, we use two methods to create them. The first one entails solely evolution which means the brain of a robot child is inherited from its parents. The second approach is evolution plus learning which means the brain of a child is inherited as well, but additionally is developed by a learning algorithm - RevDEknn. We compare these two methods by running experiments in a simulator called Revolve and use efficiency, efficacy, and the morphology intelligence of the robots for the comparison. The experiments show that the evolution plus learning method does not only lead to a higher fitness level, but also to more morphologically evolving robots. This constitutes a quantitative demonstration that changes in the brain can induce changes in the body, leading to the concept of morphological intelligence, which is quantified by the learning delta, meaning the ability of a morphology to facilitate learning.
Morpho-evolution with learning using a controller archive as an inheritance mechanism
Goff, Léni K. Le, Buchanan, Edgar, Hart, Emma, Eiben, Agoston E., Li, Wei, De Carlo, Matteo, Winfield, Alan F., Hale, Matthew F., Woolley, Robert, Angus, Mike, Timmis, Jon, Tyrrell, Andy M.
In evolutionary robotics, several approaches have been shown to be capable of the joint optimisation of body-plans and controllers by either using only evolution or combining evolution and learning. When working in rich morphological spaces, it is common for offspring to have body-plans that are very different from either of their parents, which can cause difficulties with respect to inheriting a suitable controller. To address this, we propose a framework that combines an evolutionary algorithm to generate body-plans and a learning algorithm to optimise the parameters of a neural controller where the topology of this controller is created once the body-plan of each offspring body-plan is generated. The key novelty of the approach is to add an external archive for storing learned controllers that map to explicit `types' of robots (where this is defined with respect the features of the body-plan). By inheriting an appropriate controller from the archive rather than learning from a randomly initialised one, we show that both the speed and magnitude of learning increases over time when compared to an approach that starts from scratch, using three different test-beds. The framework also provides new insights into the complex interactions between evolution and learning, and the role of morphological intelligence in robot design.