Goto

Collaborating Authors

 Egorov, Konstantin


Conditional Electrocardiogram Generation Using Hierarchical Variational Autoencoders

arXiv.org Artificial Intelligence

Cardiovascular diseases (CVDs) are disorders impacting the heart and circulatory system. These disorders are the foremost and continuously escalating cause of mortality worldwide. One of the main tasks when working with CVDs is analyzing and identifying pathologies on a 12-lead electrocardiogram (ECG) with a standard 10-second duration. Using machine learning (ML) in automatic ECG analysis increases CVD diagnostics' availability, speed, and accuracy. However, the most significant difficulty in developing ML models is obtaining a sufficient training dataset. Due to the limitations of medical data usage, such as expensiveness, errors, the ambiguity of labels, imbalance of classes, and privacy issues, utilizing synthetic samples depending on specific pathologies bypasses these restrictions and improves algorithm quality. Existing solutions for the conditional generation of ECG signals are mainly built on Generative Adversarial Networks (GANs), and only a few papers consider the architectures based on Variational Autoencoders (VAEs), showing comparable results in recent works. This paper proposes the publicly available conditional Nouveau VAE model for ECG signal generation (cNVAE-ECG), which produces high-resolution ECGs with multiple pathologies. We provide an extensive comparison of the proposed model on various practical downstream tasks, including transfer learning scenarios showing an area under the receiver operating characteristic (AUROC) increase up to 2% surpassing GAN-like competitors.


GigaPevt: Multimodal Medical Assistant

arXiv.org Artificial Intelligence

Building an intelligent and efficient medical assistant is still a challenging AI problem. The major limitation comes from the data modality scarceness, which reduces comprehensive patient perception. This demo paper presents the GigaPevt, the first multimodal medical assistant that combines the dialog capabilities of large language models with specialized medical models. Such an approach shows immediate advantages in dialog quality and metric performance, with a 1.18\% accuracy improvement in the question-answering task.


Machine learning-based detection of cardiovascular disease using ECG signals: performance vs. complexity

arXiv.org Artificial Intelligence

Cardiovascular disease remains a significant problem in modern society. Among non-invasive techniques, the electrocardiogram (ECG) is one of the most reliable methods for detecting abnormalities in cardiac activities. However, ECG interpretation requires expert knowledge and it is time-consuming. Developing a novel method to detect the disease early could prevent death and complication. The paper presents novel various approaches for classifying cardiac diseases from ECG recordings. The first approach suggests the Poincare representation of ECG signal and deep-learning-based image classifiers (ResNet50 and DenseNet121 were learned over Poincare diagrams), which showed decent performance in predicting AF (atrial fibrillation) but not other types of arrhythmia. XGBoost, a gradient-boosting model, showed an acceptable performance in long-term data but had a long inference time due to highly-consuming calculation within the pre-processing phase. Finally, the 1D convolutional model, specifically the 1D ResNet, showed the best results in both studied CinC 2017 and CinC 2020 datasets, reaching the F1 score of 85% and 71%, respectively, and that was superior to the first-ranking solution of each challenge. The paper also investigated efficiency metrics such as power consumption and equivalent CO2 emissions, with one-dimensional models like 1D CNN and 1D ResNet being the most energy efficient. Model interpretation analysis showed that the DenseNet detected AF using heart rate variability while the 1DResNet assessed AF pattern in raw ECG signals.