Goto

Collaborating Authors

 Eger, Steffen


ByGPT5: End-to-End Style-conditioned Poetry Generation with Token-free Language Models

arXiv.org Artificial Intelligence

State-of-the-art poetry generation systems are often complex. They either consist of task-specific model pipelines, incorporate prior knowledge in the form of manually created constraints, or both. In contrast, end-to-end models would not suffer from the overhead of having to model prior knowledge and could learn the nuances of poetry from data alone, reducing the degree of human supervision required. In this work, we investigate end-to-end poetry generation conditioned on styles such as rhyme, meter, and alliteration. We identify and address lack of training data and mismatching tokenization algorithms as possible limitations of past attempts. In particular, we successfully pre-train ByGPT5, a new token-free decoder-only language model, and fine-tune it on a large custom corpus of English and German quatrains annotated with our styles. We show that ByGPT5 outperforms other models such as mT5, ByT5, GPT-2 and ChatGPT, while also being more parameter efficient and performing favorably compared to humans. In addition, we analyze its runtime performance and demonstrate that it is not prone to memorization. We make our code, models, and datasets publicly available.


ChatGPT: A Meta-Analysis after 2.5 Months

arXiv.org Artificial Intelligence

ChatGPT, a chatbot developed by OpenAI, has gained widespread popularity and media attention since its release in November 2022. However, little hard evidence is available regarding its perception in various sources. In this paper, we analyze over 300,000 tweets and more than 150 scientific papers to investigate how ChatGPT is perceived and discussed. Our findings show that ChatGPT is generally viewed as of high quality, with positive sentiment and emotions of joy dominating in social media. Its perception has slightly decreased since its debut, however, with joy decreasing and (negative) surprise on the rise, and it is perceived more negatively in languages other than English. In recent scientific papers, ChatGPT is characterized as a great opportunity across various fields including the medical domain, but also as a threat concerning ethics and receives mixed assessments for education. Our comprehensive meta-analysis of ChatGPT's current perception after 2.5 months since its release can contribute to shaping the public debate and informing its future development. We make our data available.


USCORE: An Effective Approach to Fully Unsupervised Evaluation Metrics for Machine Translation

arXiv.org Artificial Intelligence

The vast majority of evaluation metrics for machine translation are supervised, i.e., (i) are trained on human scores, (ii) assume the existence of reference translations, or (iii) leverage parallel data. This hinders their applicability to cases where such supervision signals are not available. In this work, we develop fully unsupervised evaluation metrics. To do so, we leverage similarities and synergies between evaluation metric induction, parallel corpus mining, and MT systems. In particular, we use an unsupervised evaluation metric to mine pseudo-parallel data, which we use to remap deficient underlying vector spaces (in an iterative manner) and to induce an unsupervised MT system, which then provides pseudo-references as an additional component in the metric. Finally, we also induce unsupervised multilingual sentence embeddings from pseudo-parallel data. We show that our fully unsupervised metrics are effective, i.e., they beat supervised competitors on 4 out of our 5 evaluation datasets. We make our code publicly available.


DiscoScore: Evaluating Text Generation with BERT and Discourse Coherence

arXiv.org Artificial Intelligence

Recently, there has been a growing interest in designing text generation systems from a discourse coherence perspective, e.g., modeling the interdependence between sentences. Still, recent BERT-based evaluation metrics are weak in recognizing coherence, and thus are not reliable in a way to spot the discourse-level improvements of those text generation systems. In this work, we introduce DiscoScore, a parametrized discourse metric, which uses BERT to model discourse coherence from different perspectives, driven by Centering theory. Our experiments encompass 16 non-discourse and discourse metrics, including DiscoScore and popular coherence models, evaluated on summarization and document-level machine translation (MT). We find that (i) the majority of BERT-based metrics correlate much worse with human rated coherence than early discourse metrics, invented a decade ago; (ii) the recent state-of-the-art BARTScore is weak when operated at system level -- which is particularly problematic as systems are typically compared in this manner. DiscoScore, in contrast, achieves strong system-level correlation with human ratings, not only in coherence but also in factual consistency and other aspects, and surpasses BARTScore by over 10 correlation points on average. Further, aiming to understand DiscoScore, we provide justifications to the importance of discourse coherence for evaluation metrics, and explain the superiority of one variant over another. Our code is available at \url{https://github.com/AIPHES/DiscoScore}.


BMX: Boosting Machine Translation Metrics with Explainability

arXiv.org Artificial Intelligence

State-of-the-art machine translation evaluation metrics are based on black-box language models. Hence, recent works consider their explainability with the goals of better understandability for humans and better metric analysis, including failure cases. In contrast, we explicitly leverage explanations to boost the metrics' performance. In particular, we perceive explanations as word-level scores, which we convert, via power means, into sentence-level scores. We combine this sentence-level score with the original metric to obtain a better metric. Our extensive evaluation and analysis across 5 datasets, 5 metrics and 4 explainability techniques shows that some configurations reliably improve the original metrics' correlation with human judgment. On two held datasets for testing, we obtain improvements in 15/18 resp. 4/4 cases. The gains in Pearson correlation are up to 0.032 resp. 0.055. We make our code available.


Better than Average: Paired Evaluation of NLP Systems

arXiv.org Artificial Intelligence

Evaluation in NLP is usually done by comparing the scores of competing systems independently averaged over a common set of test instances. In this work, we question the use of averages for aggregating evaluation scores into a final number used to decide which system is best, since the average, as well as alternatives such as the median, ignores the pairing arising from the fact that systems are evaluated on the same test instances. We illustrate the importance of taking the instance-level pairing of evaluation scores into account and demonstrate, both theoretically and empirically, the advantages of aggregation methods based on pairwise comparisons, such as the Bradley-Terry (BT) model, a mechanism based on the estimated probability that a given system scores better than another on the test set. By re-evaluating 296 real NLP evaluation setups across four tasks and 18 evaluation metrics, we show that the choice of aggregation mechanism matters and yields different conclusions as to which systems are state of the art in about 30% of the setups. To facilitate the adoption of pairwise evaluation, we release a practical tool for performing the full analysis of evaluation scores with the mean, median, BT, and two variants of BT (Elo and TrueSkill), alongside functionality for appropriate statistical testing.


Graph Routing between Capsules

arXiv.org Artificial Intelligence

Routing methods in capsule networks often learn a hierarchical relationship for capsules in successive layers, but the intra-relation between capsules in the same layer is less studied, while this intra-relation is a key factor for the semantic understanding in text data. Therefore, in this paper, we introduce a new capsule network with graph routing to learn both relationships, where capsules in each layer are treated as the nodes of a graph. We investigate strategies to yield adjacency and degree matrix with three different distances from a layer of capsules, and propose the graph routing mechanism between those capsules. We validate our approach on five text classification datasets, and our findings suggest that the approach combining bottom-up routing and top-down attention performs the best. Such an approach demonstrates generalization capability across datasets. Compared to the state-of-the-art routing methods, the improvements in accuracy in the five datasets we used were 0.82, 0.39, 0.07, 1.01, and 0.02, respectively.


Does My Rebuttal Matter? Insights from a Major NLP Conference

arXiv.org Artificial Intelligence

Peer review is a core element of the scientific process, particularly in conference-centered fields such as ML and NLP. However, only few studies have evaluated its properties empirically. Aiming to fill this gap, we present a corpus that contains over 4k reviews and 1.2k author responses from ACL-2018. We quantitatively and qualitatively assess the corpus. This includes a pilot study on paper weaknesses given by reviewers and on quality of author responses. We then focus on the role of the rebuttal phase, and propose a novel task to predict after-rebuttal (i.e., final) scores from initial reviews and author responses. Although author responses do have a marginal (and statistically significant) influence on the final scores, especially for borderline papers, our results suggest that a reviewer's final score is largely determined by her initial score and the distance to the other reviewers' initial scores. In this context, we discuss the conformity bias inherent to peer reviewing, a bias that has largely been overlooked in previous research. We hope our analyses will help better assess the usefulness of the rebuttal phase in NLP conferences.