Efros, Alyosha
Segmenting Scenes by Matching Image Composites
Russell, Bryan, Efros, Alyosha, Sivic, Josef, Freeman, Bill, Zisserman, Andrew
In this paper, we investigate how, given an image, similar images sharing the same global description can help with unsupervised scene segmentation. In contrast to recent work in semantic alignment of scenes, we allow an input image to be explained by partial matches of similar scenes. This allows for a better explanation of the input scenes. We perform MRF-based segmentation that optimizes over matches, while respecting boundary information. The recovered segments are then used to re-query a large database of images to retrieve better matches for the target regions. We show improved performance in detecting the principal occluding and contact boundaries for the scene over previous methods on data gathered from the LabelMe database.
Beyond Categories: The Visual Memex Model for Reasoning About Object Relationships
Malisiewicz, Tomasz, Efros, Alyosha
The use of context is critical for scene understanding in computer vision, where the recognition of an object is driven by both local appearance and the objects relationship to other elements of the scene (context). Most current approaches rely on modeling the relationships between object categories as a source of context. In this paper we seek to move beyond categories to provide a richer appearance-based model of context. We present an exemplar-based model of objects and their relationships, the Visual Memex, that encodes both local appearance and 2D spatial context between object instances. We evaluate our model on Torralbas proposed Context Challenge against a baseline category-based system. Our experiments suggest that moving beyond categories for context modeling appears to be quite beneficial, and may be the critical missing ingredient in scene understanding systems.