Edwards, Catherine
Real-time Autonomous Glider Navigation Software
Yang, Ruochu, Hou, Mengxue, Lembke, Chad, Edwards, Catherine, Zhang, Fumin
Underwater gliders are widely utilized for ocean sampling, surveillance, and other various oceanic applications. In the context of complex ocean environments, gliders may yield poor navigation performance due to strong ocean currents, thus requiring substantial human effort during the manual piloting process. To enhance navigation accuracy, we developed a real-time autonomous glider navigation software, named GENIoS Python, which generates waypoints based on flow predictions to assist human piloting. The software is designed to closely check glider status, provide customizable experiment settings, utilize lightweight computing resources, offer stably communicate with dockservers, robustly run for extended operation time, and quantitatively compare flow estimates, which add to its value as an autonomous tool for underwater glider navigation.
Anomaly Detection of Underwater Gliders Verified by Deployment Data
Yang, Ruochu, Hou, Mengxue, Lembke, Chad, Edwards, Catherine, Zhang, Fumin
This paper utilizes an anomaly detection algorithm to check if underwater gliders are operating normally in the unknown ocean environment. Glider pilots can be warned of the detected glider anomaly in real time, thus taking over the glider appropriately and avoiding further damage to the glider. The adopted algorithm is validated by two valuable sets of data in real glider deployments, the University of South Florida (USF) glider Stella and the Skidaway Institute of Oceanography (SkIO) glider Angus.