Goto

Collaborating Authors

 Ecker, Alexander


Hierarchical clustering with maximum density paths and mixture models

arXiv.org Machine Learning

Hierarchical clustering is an effective and interpretable technique for analyzing structure in data, offering a nuanced understanding by revealing insights at multiple scales and resolutions. It is particularly helpful in settings where the exact number of clusters is unknown, and provides a robust framework for exploring complex datasets. Additionally, hierarchical clustering can uncover inner structures within clusters, capturing subtle relationships and nested patterns that may be obscured by traditional flat clustering methods. However, existing hierarchical clustering methods struggle with high-dimensional data, especially when there are no clear density gaps between modes. Our method addresses this limitation by leveraging a two-stage approach, first employing a Gaussian or Student's t mixture model to overcluster the data, and then hierarchically merging clusters based on the induced density landscape. This approach yields state-of-the-art clustering performance while also providing a meaningful hierarchy, making it a valuable tool for exploratory data analysis. Code is available at https://github.com/ecker-lab/tneb clustering.


FLASH{\mu}: Fast Localizing And Sizing of Holographic Microparticles

arXiv.org Artificial Intelligence

Reconstructing the 3D location and size of microparticles from diffraction images - holograms - is a computationally expensive inverse problem that has traditionally been solved using physics-based reconstruction methods. More recently, researchers have used machine learning methods to speed up the process. However, for small particles in large sample volumes the performance of these methods falls short of standard physics-based reconstruction methods. Here we designed a two-stage neural network architecture, FLASH$\mu$, to detect small particles (6-100$\mu$m) from holograms with large sample depths up to 20cm. Trained only on synthetic data with added physical noise, our method reliably detects particles of at least 9$\mu$m diameter in real holograms, comparable to the standard reconstruction-based approaches while operating on smaller crops, at quarter of the original resolution and providing roughly a 600-fold speedup. In addition to introducing a novel approach to a non-local object detection or signal demixing problem, our work could enable low-cost, real-time holographic imaging setups.


Neurometric function analysis of population codes

Neural Information Processing Systems

The relative merits of different population coding schemes have mostly been analyzed in the framework of stimulus reconstruction using Fisher Information. Here, we consider the case of stimulus discrimination in a two alternative forced choice paradigm and compute neurometric functions in terms of the minimal discrimination error and the Jensen-Shannon information to study neural population codes. We first explore the relationship between minimum discrimination error, Jensen-Shannon Information and Fisher Information and show that the discrimination framework is more informative about the coding accuracy than Fisher Information as it defines an error for any pair of possible stimuli. In particular, it includes Fisher Information as a special case. Second, we use the framework to study population codes of angular variables. Specifically, we assess the impact of different noise correlations structures on coding accuracy in long versus short decoding time windows. That is, for long time window we use the common Gaussian noise approximation. To address the case of short time windows we analyze the Ising model with identical noise correlation structure. In this way, we provide a new rigorous framework for assessing the functional consequences of noise correlation structures for the representational accuracy of neural population codes that is in particular applicable to short-time population coding.