Plotting

 Easwaran, Arvind


CRLLK: Constrained Reinforcement Learning for Lane Keeping in Autonomous Driving

arXiv.org Artificial Intelligence

Lane keeping in autonomous driving systems requires scenario-specific weight tuning for different objectives. We formulate lane-keeping as a constrained reinforcement learning problem, where weight coefficients are automatically learned along with the policy, eliminating the need for scenario-specific tuning. Empirically, our approach outperforms traditional RL in efficiency and reliability. Additionally, real-world demonstrations validate its practical value for real-world autonomous driving.


Guaranteeing Out-Of-Distribution Detection in Deep RL via Transition Estimation

arXiv.org Artificial Intelligence

An issue concerning the use of deep reinforcement learning (RL) agents is whether they can be trusted to perform reliably when deployed, as training environments may not reflect real-life environments. Anticipating instances outside their training scope, learning-enabled systems are often equipped with out-of-distribution (OOD) detectors that alert when a trained system encounters a state it does not recognize or in which it exhibits uncertainty. There exists limited work conducted on the problem of OOD detection within RL, with prior studies being unable to achieve a consensus on the definition of OOD execution within the context of RL. By framing our problem using a Markov Decision Process, we assume there is a transition distribution mapping each state-action pair to another state with some probability. Based on this, we consider the following definition of OOD execution within RL: A transition is OOD if its probability during real-life deployment differs from the transition distribution encountered during training. As such, we utilize conditional variational autoencoders (CVAE) to approximate the transition dynamics of the training environment and implement a conformity-based detector using reconstruction loss that is able to guarantee OOD detection with a pre-determined confidence level. We evaluate our detector by adapting existing benchmarks and compare it with existing OOD detection models for RL.


A novel load distribution strategy for aggregators using IoT-enabled mobile devices

arXiv.org Artificial Intelligence

The rapid proliferation of Internet-of-things (IoT) as well as mobile devices such as Electric Vehicles (EVs), has led to unpredictable load at the grid. The demand to supply ratio is particularly exacerbated at a few grid aggregators (charging stations) with excessive demand due to the geographic location, peak time, etc. Existing solutions on demand response cannot achieve significant improvements based only on time-shifting the loads without considering the device properties such as charging modes and movement capabilities to enable geographic migration. Additionally, the information on the spare capacity at a few aggregators can aid in re-channeling the load from other aggregators facing excess demand to allow migration of devices. In this paper, we model these flexible properties of the devices as a mixed-integer non-linear problem (MINLP) to minimize excess load and the improve the utility (benefit) across all devices. We propose an online distributed low-complexity heuristic that prioritizes devices based on demand and deadlines to minimize the cumulative loss in utility. The proposed heuristic is tested on an exhaustive set of synthetic data and compared with solutions from a solver/optimization tool for the same runtime to show the impracticality of using a solver. A real-world EV testbed data is also tested with our proposed solution and other scheduling solutions to show the practicality of generating a feasible schedule and a loss improvement of at least 57.23%.


Function+Data Flow: A Framework to Specify Machine Learning Pipelines for Digital Twinning

arXiv.org Artificial Intelligence

The development of digital twins (DTs) for physical systems increasingly leverages artificial intelligence (AI), particularly for combining data from different sources or for creating computationally efficient, reduced-dimension models. Indeed, even in very different application domains, twinning employs common techniques such as model order reduction and modelization with hybrid data (that is, data sourced from both physics-based models and sensors). Despite this apparent generality, current development practices are ad-hoc, making the design of AI pipelines for digital twinning complex and time-consuming. Here we propose Function+Data Flow (FDF), a domain-specific language (DSL) to describe AI pipelines within DTs. FDF aims to facilitate the design and validation of digital twins. Specifically, FDF treats functions as first-class citizens, enabling effective manipulation of models learned with AI. We illustrate the benefits of FDF on two concrete use cases from different domains: predicting the plastic strain of a structure and modeling the electromagnetic behavior of a bearing.


A Low-Cost Lane-Following Algorithm for Cyber-Physical Robots

arXiv.org Artificial Intelligence

Duckiebots are low-cost mobile robots that are widely used in the fields of research and education. Although there are existing self-driving algorithms for the Duckietown platform, they are either too complex or perform too poorly to navigate a multi-lane track. Moreover, it is essential to give memory and computational resources to a Duckiebot so it can perform additional tasks such as out-of-distribution input detection. In order to satisfy these constraints, we built a low-cost autonomous driving algorithm capable of driving on a two-lane track. The algorithm uses traditional computer vision techniques to identify the central lane on the track and obtain the relevant steering angle. The steering is then controlled by a PID controller that smoothens the movement of the Duckiebot. The performance of the algorithm was compared to that of the NeurIPS 2018 AI Driving Olympics (AIDO) finalists, and it outperformed all but one finalists. The two main contributions of our algorithm are its low computational requirements and very quick set-up, with ongoing efforts to make it more reliable.


Co-Design of Out-of-Distribution Detectors for Autonomous Emergency Braking Systems

arXiv.org Artificial Intelligence

Learning enabled components (LECs), while critical for decision making in autonomous vehicles (AVs), are likely to make incorrect decisions when presented with samples outside of their training distributions. Out-of-distribution (OOD) detectors have been proposed to detect such samples, thereby acting as a safety monitor, however, both OOD detectors and LECs require heavy utilization of embedded hardware typically found in AVs. For both components, there is a tradeoff between non-functional and functional performance, and both impact a vehicle's safety. For instance, giving an OOD detector a longer response time can increase its accuracy at the expense of the LEC. We consider an LEC with binary output like an autonomous emergency braking system (AEBS) and use risk, the combination of severity and occurrence of a failure, to model the effect of both components' design parameters on each other's functional and non-functional performance, as well as their impact on system safety. We formulate a co-design methodology that uses this risk model to find the design parameters for an OOD detector and LEC that decrease risk below that of the baseline system and demonstrate it on a vision based AEBS. Using our methodology, we achieve a 42.3% risk reduction while maintaining equivalent resource utilization.


PAC-Based Formal Verification for Out-of-Distribution Data Detection

arXiv.org Artificial Intelligence

Cyber-physical systems (CPS) like autonomous vehicles, that utilize learning components, are often sensitive to noise and out-of-distribution (OOD) instances encountered during runtime. As such, safety critical tasks depend upon OOD detection subsystems in order to restore the CPS to a known state or interrupt execution to prevent safety from being compromised. However, it is difficult to guarantee the performance of OOD detectors as it is difficult to characterize the OOD aspect of an instance, especially in high-dimensional unstructured data. To distinguish between OOD data and data known to the learning component through the training process, an emerging technique is to incorporate variational autoencoders (VAE) within systems and apply classification or anomaly detection techniques on their latent spaces. The rationale for doing so is the reduction of the data domain size through the encoding process, which benefits real-time systems through decreased processing requirements, facilitates feature analysis for unstructured data and allows more explainable techniques to be implemented. This study places probably approximately correct (PAC) based guarantees on OOD detection using the encoding process within VAEs to quantify image features and apply conformal constraints over them. This is used to bound the detection error on unfamiliar instances with user-defined confidence. The approach used in this study is to empirically establish these bounds by sampling the latent probability distribution and evaluating the error with respect to the constraint violations that are encountered. The guarantee is then verified using data generated from CARLA, an open-source driving simulator.


Demo Abstract: Real-Time Out-of-Distribution Detection on a Mobile Robot

arXiv.org Artificial Intelligence

In a cyber-physical system such as an autonomous vehicle (AV), machine learning (ML) models can be used to navigate and identify objects that may interfere with the vehicle's operation. However, ML models are unlikely to make accurate decisions when presented with data outside their training distribution. Out-of-distribution (OOD) detection can act as a safety monitor for ML models by identifying such samples at run time. However, in safety critical systems like AVs, OOD detection needs to satisfy real-time constraints in addition to functional requirements. In this demonstration, we use a mobile robot as a surrogate for an AV and use an OOD detector to identify potentially hazardous samples. The robot navigates a miniature town using image data and a YOLO object detection network. We show that our OOD detector is capable of identifying OOD images in real-time on an embedded platform concurrently performing object detection and lane following. We also show that it can be used to successfully stop the vehicle in the presence of unknown, novel samples.


Design Methodology for Deep Out-of-Distribution Detectors in Real-Time Cyber-Physical Systems

arXiv.org Artificial Intelligence

When machine learning (ML) models are supplied with data outside their training distribution, they are more likely to make inaccurate predictions; in a cyber-physical system (CPS), this could lead to catastrophic system failure. To mitigate this risk, an out-of-distribution (OOD) detector can run in parallel with an ML model and flag inputs that could lead to undesirable outcomes. Although OOD detectors have been well studied in terms of accuracy, there has been less focus on deployment to resource constrained CPSs. In this study, a design methodology is proposed to tune deep OOD detectors to meet the accuracy and response time requirements of embedded applications. The methodology uses genetic algorithms to optimize the detector's preprocessing pipeline and selects a quantization method that balances robustness and response time. It also identifies several candidate task graphs under the Robot Operating System (ROS) for deployment of the selected design. The methodology is demonstrated on two variational autoencoder based OOD detectors from the literature on two embedded platforms. Insights into the trade-offs that occur during the design process are provided, and it is shown that this design methodology can lead to a drastic reduction in response time in relation to an unoptimized OOD detector while maintaining comparable accuracy.


Efficient Out-of-Distribution Detection Using Latent Space of $\beta$-VAE for Cyber-Physical Systems

arXiv.org Artificial Intelligence

Deep Neural Networks are actively being used in the design of autonomous Cyber-Physical Systems (CPSs). The advantage of these models is their ability to handle high-dimensional state-space and learn compact surrogate representations of the operational state spaces. However, the problem is that the sampled observations used for training the model may never cover the entire state space of the physical environment, and as a result, the system will likely operate in conditions that do not belong to the training distribution. These conditions that do not belong to training distribution are referred to as Out-of-Distribution (OOD). Detecting OOD conditions at runtime is critical for the safety of CPS. In addition, it is also desirable to identify the context or the feature(s) that are the source of OOD to select an appropriate control action to mitigate the consequences that may arise because of the OOD condition. In this paper, we study this problem as a multi-labeled time series OOD detection problem over images, where the OOD is defined both sequentially across short time windows (change points) as well as across the training data distribution. A common approach to solving this problem is the use of multi-chained one-class classifiers. However, this approach is expensive for CPSs that have limited computational resources and require short inference times. Our contribution is an approach to design and train a single $\beta$-Variational Autoencoder detector with a partially disentangled latent space sensitive to variations in image features. We use the feature sensitive latent variables in the latent space to detect OOD images and identify the most likely feature(s) responsible for the OOD. We demonstrate our approach using an Autonomous Vehicle in the CARLA simulator and a real-world automotive dataset called nuImages.