E, Weinan
Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes
Wu, Lei, Zhu, Zhanxing, E, Weinan
It is widely observed that deep learning models with learned parameters generalize well, even with much more model parameters than the number of training samples. We systematically investigate the underlying reasons why deep neural networks often generalize well, and reveal the difference between the minima (with the same training error) that generalize well and those they don't. We show that it is the characteristics the landscape of the loss function that explains the good generalization capability. For the landscape of loss function for deep networks, the volume of basin of attraction of good minima dominates over that of poor minima, which guarantees optimization methods with random initialization to converge to good minima. We theoretically justify our findings through analyzing 2-layer neural networks; and show that the low-complexity solutions have a small norm of Hessian matrix with respect to model parameters. For deeper networks, extensive numerical evidence helps to support our arguments.
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E, Weinan, Yu, Bing
We propose a deep learning based method, the Deep Ritz Method, for numerically solving variational problems, particularly the ones that arise from partial differential equations. The Deep Ritz method is naturally nonlinear, naturally adaptive and has the potential to work in rather high dimensions. The framework is quite simple and fits well with the stochastic gradient descent method used in deep learning. We illustrate the method on several problems including some eigenvalue problems.
Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
Beck, Christian, E, Weinan, Jentzen, Arnulf
High-dimensional partial differential equations (PDE) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment (CVA) models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonlinear due to the need to incorporate certain nonlinear phenomena in the model such as default risks, transaction costs, volatility uncertainty (Knightian uncertainty), or trading constraints in the model. Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the computational effort for standard approximation methods grows exponentially with the dimension. In this work we propose a new method for solving high-dimensional fully nonlinear second-order PDEs. Our method can in particular be used to sample from high-dimensional nonlinear expectations. The method is based on (i) a connection between fully nonlinear second-order PDEs and second-order backward stochastic differential equations (2BSDEs), (ii) a merged formulation of the PDE and the 2BSDE problem, (iii) a temporal forward discretization of the 2BSDE and a spatial approximation via deep neural nets, and (iv) a stochastic gradient descent-type optimization procedure. Numerical results obtained using ${\rm T{\small ENSOR}F{\small LOW}}$ in ${\rm P{\small YTHON}}$ illustrate the efficiency and the accuracy of the method in the cases of a $100$-dimensional Black-Scholes-Barenblatt equation, a $100$-dimensional Hamilton-Jacobi-Bellman equation, and a nonlinear expectation of a $ 100 $-dimensional $ G $-Brownian motion.
Stochastic modified equations and adaptive stochastic gradient algorithms
Li, Qianxiao, Tai, Cheng, E, Weinan
We develop the method of stochastic modified equations (SME), in which stochastic gradient algorithms are approximated in the weak sense by continuous-time stochastic differential equations. We exploit the continuous formulation together with optimal control theory to derive novel adaptive hyper-parameter adjustment policies. Our algorithms have competitive performance with the added benefit of being robust to varying models and datasets. This provides a general methodology for the analysis and design of stochastic gradient algorithms.
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
E, Weinan, Han, Jiequn, Jentzen, Arnulf
We propose a new algorithm for solving parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) in high dimension, by making an analogy between the BSDE and reinforcement learning with the gradient of the solution playing the role of the policy function, and the loss function given by the error between the prescribed terminal condition and the solution of the BSDE. The policy function is then approximated by a neural network, as is done in deep reinforcement learning. Numerical results using TensorFlow illustrate the efficiency and accuracy of the proposed algorithms for several 100-dimensional nonlinear PDEs from physics and finance such as the Allen-Cahn equation, the Hamilton-Jacobi-Bellman equation, and a nonlinear pricing model for financial derivatives.
Deep Learning Approximation for Stochastic Control Problems
Han, Jiequn, E, Weinan
Many real world stochastic control problems suffer from the "curse of dimensionality". To overcome this difficulty, we develop a deep learning approach that directly solves high-dimensional stochastic control problems based on Monte-Carlo sampling. We approximate the time-dependent controls as feedforward neural networks and stack these networks together through model dynamics. The objective function for the control problem plays the role of the loss function for the deep neural network. We test this approach using examples from the areas of optimal trading and energy storage. Our results suggest that the algorithm presented here achieves satisfactory accuracy and at the same time, can handle rather high dimensional problems.
Convolutional neural networks with low-rank regularization
Tai, Cheng, Xiao, Tong, Zhang, Yi, Wang, Xiaogang, E, Weinan
Large CNNs have delivered impressive performance in various computer vision applications. But the storage and computation requirements make it problematic for deploying these models on mobile devices. Recently, tensor decompositions have been used for speeding up CNNs. In this paper, we further develop the tensor decomposition technique. We propose a new algorithm for computing the low-rank tensor decomposition for removing the redundancy in the convolution kernels. The algorithm finds the exact global optimizer of the decomposition and is more effective than iterative methods. Based on the decomposition, we further propose a new method for training low-rank constrained CNNs from scratch. Interestingly, while achieving a significant speedup, sometimes the low-rank constrained CNNs delivers significantly better performance than their non-constrained counterparts. On the CIFAR-10 dataset, the proposed low-rank NIN model achieves $91.31\%$ accuracy (without data augmentation), which also improves upon state-of-the-art result. We evaluated the proposed method on CIFAR-10 and ILSVRC12 datasets for a variety of modern CNNs, including AlexNet, NIN, VGG and GoogleNet with success. For example, the forward time of VGG-16 is reduced by half while the performance is still comparable. Empirical success suggests that low-rank tensor decompositions can be a very useful tool for speeding up large CNNs.
Functional Frank-Wolfe Boosting for General Loss Functions
Wang, Chu, Wang, Yingfei, E, Weinan, Schapire, Robert
Boosting is a generic learning method for classification and regression. Yet, as the number of base hypotheses becomes larger, boosting can lead to a deterioration of test performance. Overfitting is an important and ubiquitous phenomenon, especially in regression settings. To avoid overfitting, we consider using $l_1$ regularization. We propose a novel Frank-Wolfe type boosting algorithm (FWBoost) applied to general loss functions. By using exponential loss, the FWBoost algorithm can be rewritten as a variant of AdaBoost for binary classification. FWBoost algorithms have exactly the same form as existing boosting methods, in terms of making calls to a base learning algorithm with different weights update. This direct connection between boosting and Frank-Wolfe yields a new algorithm that is as practical as existing boosting methods but with new guarantees and rates of convergence. Experimental results show that the test performance of FWBoost is not degraded with larger rounds in boosting, which is consistent with the theoretical analysis.