Dzyuba, Vladimir
Flexible constrained sampling with guarantees for pattern mining
Dzyuba, Vladimir, van Leeuwen, Matthijs, De Raedt, Luc
Pattern sampling has been proposed as a potential solution to the infamous pattern explosion. Instead of enumerating all patterns that satisfy the constraints, individual patterns are sampled proportional to a given quality measure. Several sampling algorithms have been proposed, but each of them has its limitations when it comes to 1) flexibility in terms of quality measures and constraints that can be used, and/or 2) guarantees with respect to sampling accuracy. We therefore present Flexics, the first flexible pattern sampler that supports a broad class of quality measures and constraints, while providing strong guarantees regarding sampling accuracy. To achieve this, we leverage the perspective on pattern mining as a constraint satisfaction problem and build upon the latest advances in sampling solutions in SAT as well as existing pattern mining algorithms. Furthermore, the proposed algorithm is applicable to a variety of pattern languages, which allows us to introduce and tackle the novel task of sampling sets of patterns. We introduce and empirically evaluate two variants of Flexics: 1) a generic variant that addresses the well-known itemset sampling task and the novel pattern set sampling task as well as a wide range of expressive constraints within these tasks, and 2) a specialized variant that exploits existing frequent itemset techniques to achieve substantial speed-ups. Experiments show that Flexics is both accurate and efficient, making it a useful tool for pattern-based data exploration.
Predicting Soccer Highlights from Spatio-Temporal Match Event Streams
Decroos, Tom (Katholieke Universiteit Leuven) | Dzyuba, Vladimir (Katholieke Universiteit Leuven) | Haaren, Jan Van (Katholieke Universiteit Leuven) | Davis, Jesse (Katholieke Universiteit Leuven)
Sports broadcasters are continuously seeking to make their live coverages of soccer matches more attractive. A recent innovation is the “highlight channel,” which shows the most interesting events from multiple matches played at the same time. However, switching between matches at the right time is challenging in fast-paced sports like soccer, where interesting situations often evolve as quickly as they disappear again. This paper presents the POGBA algorithm for automatically predicting highlights in soccer matches, which is an important task that has not yet been addressed. POGBA leverages spatio-temporal event streams collected during matches to predict the probability that a particular game state will lead to a goal. An empirical evaluation on a real-world dataset shows that POGBA outperforms the baseline algorithms in terms of both precision and recall.
Learning what matters - Sampling interesting patterns
Dzyuba, Vladimir, van Leeuwen, Matthijs
In the field of exploratory data mining, local structure in data can be described by patterns and discovered by mining algorithms. Although many solutions have been proposed to address the redundancy problems in pattern mining, most of them either provide succinct pattern sets or take the interests of the user into account-but not both. Consequently, the analyst has to invest substantial effort in identifying those patterns that are relevant to her specific interests and goals. To address this problem, we propose a novel approach that combines pattern sampling with interactive data mining. In particular, we introduce the LetSIP algorithm, which builds upon recent advances in 1) weighted sampling in SAT and 2) learning to rank in interactive pattern mining. Specifically, it exploits user feedback to directly learn the parameters of the sampling distribution that represents the user's interests. We compare the performance of the proposed algorithm to the state-of-the-art in interactive pattern mining by emulating the interests of a user. The resulting system allows efficient and interleaved learning and sampling, thus user-specific anytime data exploration. Finally, LetSIP demonstrates favourable trade-offs concerning both quality-diversity and exploitation-exploration when compared to existing methods.