Duy, Vo Nguyen Le
Multi-level Supervised Contrastive Learning
Ghanooni, Naghmeh, Pajoum, Barbod, Rawal, Harshit, Fellenz, Sophie, Duy, Vo Nguyen Le, Kloft, Marius
Contrastive learning is a well-established paradigm in representation learning. The standard framework of contrastive learning minimizes the distance between "similar" instances and maximizes the distance between dissimilar ones in the projection space, disregarding the various aspects of similarity that can exist between two samples. Current methods rely on a single projection head, which fails to capture the full complexity of different aspects of a sample, leading to suboptimal performance, especially in scenarios with limited training data. In this paper, we present a novel supervised contrastive learning method in a unified framework called multilevel contrastive learning (MLCL), that can be applied to both multi-label and hierarchical classification tasks. The key strength of the proposed method is the ability to capture similarities between samples across different labels and/or hierarchies using multiple projection heads. Extensive experiments on text and image datasets demonstrate that the proposed approach outperforms state-of-the-art contrastive learning methods
Statistical Inference for Sequential Feature Selection after Domain Adaptation
Loc, Duong Tan, Loi, Nguyen Thang, Duy, Vo Nguyen Le
In high-dimensional regression, feature selection methods, such as sequential feature selection (SeqFS), are commonly used to identify relevant features. When data is limited, domain adaptation (DA) becomes crucial for transferring knowledge from a related source domain to a target domain, improving generalization performance. Although SeqFS after DA is an important task in machine learning, none of the existing methods can guarantee the reliability of its results. In this paper, we propose a novel method for testing the features selected by SeqFS-DA. The main advantage of the proposed method is its capability to control the false positive rate (FPR) below a significance level $\alpha$ (e.g., 0.05). Additionally, a strategic approach is introduced to enhance the statistical power of the test. Furthermore, we provide extensions of the proposed method to SeqFS with model selection criteria including AIC, BIC, and adjusted R-squared. Extensive experiments are conducted on both synthetic and real-world datasets to validate the theoretical results and demonstrate the proposed method's superior performance.
Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval
Trung, Quang Hoang, Phuc, Nguyen Van Hoang, Hoang, Le Trung, Hieu, Quang Huu, Duy, Vo Nguyen Le
Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace.
Controllable RANSAC-based Anomaly Detection via Hypothesis Testing
Phong, Le Hong, Luat, Ho Ngoc, Duy, Vo Nguyen Le
Detecting the presence of anomalies in regression models is a crucial task in machine learning, as anomalies can significantly impact the accuracy and reliability of predictions. Random Sample Consensus (RANSAC) is one of the most popular robust regression methods for addressing this challenge. However, this method lacks the capability to guarantee the reliability of the anomaly detection (AD) results. In this paper, we propose a novel statistical method for testing the AD results obtained by RANSAC, named CTRL-RANSAC (controllable RANSAC). The key strength of the proposed method lies in its ability to control the probability of misidentifying anomalies below a pre-specified level $\alpha$ (e.g., $\alpha = 0.05$). By examining the selection strategy of RANSAC and leveraging the Selective Inference (SI) framework, we prove that achieving controllable RANSAC is indeed feasible. Furthermore, we introduce a more strategic and computationally efficient approach to enhance the true detection rate and overall performance of the CTRL-RANSAC. Experiments conducted on synthetic and real-world datasets robustly support our theoretical results, showcasing the superior performance of the proposed method.
Statistical Inference for Feature Selection after Optimal Transport-based Domain Adaptation
Loi, Nguyen Thang, Loc, Duong Tan, Duy, Vo Nguyen Le
Feature Selection (FS) under domain adaptation (DA) is a critical task in machine learning, especially when dealing with limited target data. However, existing methods lack the capability to guarantee the reliability of FS under DA. In this paper, we introduce a novel statistical method to statistically test FS reliability under DA, named SFS-DA (statistical FS-DA). The key strength of SFS-DA lies in its ability to control the false positive rate (FPR) below a pre-specified level $\alpha$ (e.g., 0.05) while maximizing the true positive rate. Compared to the literature on statistical FS, SFS-DA presents a unique challenge in addressing the effect of DA to ensure the validity of the inference on FS results. We overcome this challenge by leveraging the Selective Inference (SI) framework. Specifically, by carefully examining the FS process under DA whose operations can be characterized by linear and quadratic inequalities, we prove that achieving FPR control in SFS-DA is indeed possible. Furthermore, we enhance the true detection rate by introducing a more strategic approach. Experiments conducted on both synthetic and real-world datasets robustly support our theoretical results, showcasing the superior performance of the proposed SFS-DA method.
Statistical Test for Generated Hypotheses by Diffusion Models
Katsuoka, Teruyuki, Shiraishi, Tomohiro, Miwa, Daiki, Duy, Vo Nguyen Le, Takeuchi, Ichiro
The enhanced performance of AI has accelerated its integration into scientific research. In particular, the use of generative AI to create scientific hypotheses is promising and is increasingly being applied across various fields. However, when employing AI-generated hypotheses for critical decisions, such as medical diagnoses, verifying their reliability is crucial. In this study, we consider a medical diagnostic task using generated images by diffusion models, and propose a statistical test to quantify its reliability. The basic idea behind the proposed statistical test is to employ a selective inference framework, where we consider a statistical test conditional on the fact that the generated images are produced by a trained diffusion model. Using the proposed method, the statistical reliability of medical image diagnostic results can be quantified in the form of a p-value, allowing for decision-making with a controlled error rate. We show the theoretical validity of the proposed statistical test and its effectiveness through numerical experiments on synthetic and brain image datasets.
Statistical Test for Anomaly Detections by Variational Auto-Encoders
Miwa, Daiki, Shiraishi, Tomohiro, Duy, Vo Nguyen Le, Katsuoka, Teruyuki, Takeuchi, Ichiro
In this study, we consider the reliability assessment of anomaly detection (AD) using Variational Autoencoder (VAE). Over the last decade, VAE-based AD has been actively studied in various perspective, from method development to applied research. However, when the results of ADs are used in high-stakes decision-making, such as in medical diagnosis, it is necessary to ensure the reliability of the detected anomalies. In this study, we propose the VAE-AD Test as a method for quantifying the statistical reliability of VAE-based AD within the framework of statistical testing. Using the VAE-AD Test, the reliability of the anomaly regions detected by a VAE can be quantified in the form of p-values. This means that if an anomaly is declared when the p-value is below a certain threshold, it is possible to control the probability of false detection to a desired level. Since the VAE-AD Test is constructed based on a new statistical inference framework called selective inference, its validity is theoretically guaranteed in finite samples. To demonstrate the validity and effectiveness of the proposed VAE-AD Test, numerical experiments on artificial data and applications to brain image analysis are conducted.
Statistical Test for Attention Map in Vision Transformer
Shiraishi, Tomohiro, Miwa, Daiki, Katsuoka, Teruyuki, Duy, Vo Nguyen Le, Taji, Kouichi, Takeuchi, Ichiro
The Vision Transformer (ViT) demonstrates exceptional performance in various computer vision tasks. Attention is crucial for ViT to capture complex wide-ranging relationships among image patches, allowing the model to weigh the importance of image patches and aiding our understanding of the decision-making process. However, when utilizing the attention of ViT as evidence in high-stakes decision-making tasks such as medical diagnostics, a challenge arises due to the potential of attention mechanisms erroneously focusing on irrelevant regions. In this study, we propose a statistical test for ViT's attentions, enabling us to use the attentions as reliable quantitative evidence indicators for ViT's decision-making with a rigorously controlled error rate. Using the framework called selective inference, we quantify the statistical significance of attentions in the form of p-values, which enables the theoretically grounded quantification of the false positive detection probability of attentions. We demonstrate the validity and the effectiveness of the proposed method through numerical experiments and applications to brain image diagnoses.
Multi-agent statistical discriminative sub-trajectory mining and an application to NBA basketball
Bunker, Rory, Duy, Vo Nguyen Le, Tabei, Yasuo, Takeuchi, Ichiro, Fujii, Keisuke
Improvements in tracking technology through optical and computer vision systems have enabled a greater understanding of the movement-based behaviour of multiple agents, including in team sports. In this study, a Multi-Agent Statistically Discriminative Sub-Trajectory Mining (MA-Stat-DSM) method is proposed that takes a set of binary-labelled agent trajectory matrices as input and incorporates Hausdorff distance to identify sub-matrices that statistically significantly discriminate between the two groups of labelled trajectory matrices. Utilizing 2015/16 SportVU NBA tracking data, agent trajectory matrices representing attacks consisting of the trajectories of five agents (the ball, shooter, last passer, shooter defender, and last passer defender), were truncated to correspond to the time interval following the receipt of the ball by the last passer, and labelled as effective or ineffective based on a definition of attack effectiveness that we devise in the current study. After identifying appropriate parameters for MA-Stat-DSM by iteratively applying it to all matches involving the two top- and two bottom-placed teams from the 2015/16 NBA season, the method was then applied to selected matches and could identify and visualize the portions of plays, e.g., involving passing, on-, and/or off-the-ball movements, which were most relevant in rendering attacks effective or ineffective.
Selective Inference for Changepoint detection by Recurrent Neural Network
Shiraishi, Tomohiro, Miwa, Daiki, Duy, Vo Nguyen Le, Takeuchi, Ichiro
In this study, we investigate the quantification of the statistical reliability of detected change points (CPs) in time series using a Recurrent Neural Network (RNN). Thanks to its flexibility, RNN holds the potential to effectively identify CPs in time series characterized by complex dynamics. However, there is an increased risk of erroneously detecting random noise fluctuations as CPs. The primary goal of this study is to rigorously control the risk of false detections by providing theoretically valid p-values to the CPs detected by RNN. To achieve this, we introduce a novel method based on the framework of Selective Inference (SI). SI enables valid inferences by conditioning on the event of hypothesis selection, thus mitigating selection bias. In this study, we apply SI framework to RNN-based CP detection, where characterizing the complex process of RNN selecting CPs is our main technical challenge. We demonstrate the validity and effectiveness of the proposed method through artificial and real data experiments.