Dutta, Soumya
HCAM -- Hierarchical Cross Attention Model for Multi-modal Emotion Recognition
Dutta, Soumya, Ganapathy, Sriram
Emotion recognition in conversations is challenging due to the multi-modal nature of the emotion expression. We propose a hierarchical cross-attention model (HCAM) approach to multi-modal emotion recognition using a combination of recurrent and co-attention neural network models. The input to the model consists of two modalities, i) audio data, processed through a learnable wav2vec approach and, ii) text data represented using a bidirectional encoder representations from transformers (BERT) model. The audio and text representations are processed using a set of bi-directional recurrent neural network layers with self-attention that converts each utterance in a given conversation to a fixed dimensional embedding. In order to incorporate contextual knowledge and the information across the two modalities, the audio and text embeddings are combined using a co-attention layer that attempts to weigh the utterance level embeddings relevant to the task of emotion recognition. The neural network parameters in the audio layers, text layers as well as the multi-modal co-attention layers, are hierarchically trained for the emotion classification task. We perform experiments on three established datasets namely, IEMOCAP, MELD and CMU-MOSI, where we illustrate that the proposed model improves significantly over other benchmarks and helps achieve state-of-art results on all these datasets.
Zero Shot Audio to Audio Emotion Transfer With Speaker Disentanglement
Dutta, Soumya, Ganapathy, Sriram
The problem of audio-to-audio (A2A) style transfer involves replacing the style features of the source audio with those from the target audio while preserving the content related attributes of the source audio. In this paper, we propose an efficient approach, termed as Zero-shot Emotion Style Transfer (ZEST), that allows the transfer of emotional content present in the given source audio with the one embedded in the target audio while retaining the speaker and speech content from the source. The proposed system builds upon decomposing speech into semantic tokens, speaker representations and emotion embeddings. Using these factors, we propose a framework to reconstruct the pitch contour of the given speech signal and train a decoder that reconstructs the speech signal. The model is trained using a self-supervision based reconstruction loss. During conversion, the emotion embedding is alone derived from the target audio, while rest of the factors are derived from the source audio. In our experiments, we show that, even without using parallel training data or labels from the source or target audio, we illustrate zero shot emotion transfer capabilities of the proposed ZEST model using objective and subjective quality evaluations.