Goto

Collaborating Authors

 Dutta, Partha


Managing Overstaying Electric Vehicles in Park-and-Charge Facilities

arXiv.org Artificial Intelligence

With the increase in adoption of Electric Vehicles (EVs), proper utilization of the charging infrastructure is an emerging challenge for service providers. Overstaying of an EV after a charging event is a key contributor to low utilization. Since overstaying is easily detectable by monitoring the power drawn from the charger, managing this problem primarily involves designing an appropriate "penalty" during the overstaying period. Higher penalties do discourage overstaying; however, due to uncertainty in parking duration, less people would find such penalties acceptable, leading to decreased utilization (and revenue). To analyze this central trade-off, we develop a novel framework that integrates models for realistic user behavior into queueing dynamics to locate the optimal penalty from the points of view of utilization and revenue, for different values of the external charging demand. Next, when the model parameters are unknown, we show how an online learning algorithm, such as UCB, can be adapted to learn the optimal penalty. Our experimental validation, based on charging data from London, shows that an appropriate penalty can increase both utilization and revenue while significantly reducing overstaying.


Demand Prediction and Placement Optimization for Electric Vehicle Charging Stations

arXiv.org Artificial Intelligence

Effective placement of charging stations plays a key role in Electric Vehicle (EV) adoption. In the placement problem, given a set of candidate sites, an optimal subset needs to be selected with respect to the concerns of both (a) the charging station service provider, such as the demand at the candidate sites and the budget for deployment, and (b) the EV user, such as charging station reachability and short waiting times at the station. This work addresses these concerns, making the following three novel contributions: (i) a supervised multi-view learning framework using Canonical Correlation Analysis (CCA) for demand prediction at candidate sites, using multiple datasets such as points of interest information, traffic density, and the historical usage at existing charging stations; (ii) a mixed-packing-and- covering optimization framework that models competing concerns of the service provider and EV users; (iii) an iterative heuristic to solve these problems by alternately invoking knapsack and set cover algorithms. The performance of the demand prediction model and the placement optimization heuristic are evaluated using real world data.


Cell Design and Routing of Jobs in a Multisite Make-to-Order Enterprise

AAAI Conferences

Make-to-order is a production process where the businesses build the product only after an order from the customer is received. A large enterprise may have many such make-to-order shops distributed geographically. The cost and time for executing a job in each of these shops may vary. Therefore, it is important for a multisite enterprise to judiciously decide on where to process the jobs. Ideally, an enterprise would like to minimize the cost (or maximize the profit) while meeting the deadlines and at the same time maximize the utilization of the shops. The time to execute jobs can vary based on how the shops are laid out (the design of shops) and the decision of how jobs are routed (among the various shops). Predicting (or estimating) the likely turnaround time (and cost) for various jobs across the different shops enables the routing decision process. In this paper, we address the two important problems of (i) cell-design and (ii) turnaround time prediction and routing of jobs across various shops. We propose (i) a novel approach based on graph partitioning and set cover heuristic to generate a set of cell designs for a shop, (ii) a framework based on machine learning techniques to predict the turnaround time of jobs across various shops, and (iii) a routing algorithm based on dynamic programming and local search heuristic to route jobs such that the overall profit is maximized. We present results of applying the proposed approaches on real-life datasets from a multisite print shop enterprise.