Dusi, Akhil
The Role of GitHub Copilot on Software Development: A Perspec-tive on Productivity, Security, Best Practices and Future Directions
Nettur, Suresh Babu, Karpurapu, Shanthi, Nettur, Unnati, Gajja, Likhit Sagar, Myneni, Sravanthy, Dusi, Akhil
GitHub Copilot is transforming software development by automating tasks and boosting productivity through AI-driven code generation. In this paper, we con-duct a literature survey to synthesize insights on Copilot's impact on productivity and security. We review academic journal databases, industry reports, and official docu-mentation to highlight key findings and challenges. While Copilot accelerates coding and prototyping, concerns over security vulnerabilities and intellectual property risks persist. Drawing from the literature, we provide a perspective on best practices and future directions for responsible AI adoption in software engineering, offering action-able insights for developers and organizations to integrate Copilot effectively while maintaining high standards of quality and security.
Lightweight Weighted Average Ensemble Model for Pneumonia Detection in Chest X-Ray Images
Nettur, Suresh Babu, Karpurapu, Shanthi, Nettur, Unnati, Gajja, Likhit Sagar, Myneni, Sravanthy, Dusi, Akhil, Posham, Lalithya
Pneumonia is a leading cause of illness and death in children, underscoring the need for early and accurate detection. In this study, we propose a novel lightweight ensemble model for detecting pneumonia in children using chest X-ray images. This ensemble model integrates two pre-trained convolutional neural networks (CNNs), MobileNetV2 and NASNetMobile, selected for their balance of computational efficiency and accuracy. These models were fine-tuned on a pediatric chest X-ray dataset and combined to enhance classification performance. Our proposed ensemble model achieved a classification accuracy of 98.63%, significantly outperforming individual models such as MobileNetV2 (97.10%) and NASNetMobile(96.25%) in terms of accuracy, precision, recall, and F1 score. Moreover, the ensemble model outperformed state-of-the-art architectures, including ResNet50, InceptionV3, and DenseNet201, while maintaining computational efficiency. The proposed lightweight ensemble model presents a highly effective and resource-efficient solution for pneumonia detection, making it particularly suitable for deployment in resource-constrained settings.
UltraLightSqueezeNet: A Deep Learning Architecture for Malaria Classification with up to 54x fewer trainable parameters for resource constrained devices
Nettur, Suresh Babu, Karpurapu, Shanthi, Nettur, Unnati, Gajja, Likhit Sagar, Myneni, Sravanthy, Dusi, Akhil, Posham, Lalithya
Lightweight deep learning approaches for malaria detection have gained attention for their potential to enhance diagnostics in resource constrained environments. For our study, we selected SqueezeNet1.1 as it is one of the most popular lightweight architectures. SqueezeNet1.1 is a later version of SqueezeNet1.0 and is 2.4 times more computationally efficient than the original model. We proposed and implemented three ultra-lightweight architecture variants to SqueezeNet1.1 architecture, namely Variant 1 (one fire module), Variant 2 (two fire modules), and Variant 3 (four fire modules), which are even more compact than SqueezeNetV1.1 (eight fire modules). These models were implemented to evaluate the best performing variant that achieves superior computational efficiency without sacrificing accuracy in malaria blood cell classification. The models were trained and evaluated using the NIH Malaria dataset. We assessed each model's performance based on metrics including accuracy, recall, precision, F1-score, and Area Under the Curve (AUC). The results show that the SqueezeNet1.1 model achieves the highest performance across all metrics, with a classification accuracy of 97.12%. Variant 3 (four fire modules) offers a competitive alternative, delivering almost identical results (accuracy 96.55%) with a 6x reduction in computational overhead compared to SqueezeNet1.1. Variant 2 and Variant 1 perform slightly lower than Variant 3, with Variant 2 (two fire modules) reducing computational overhead by 28x, and Variant 1 (one fire module) achieving a 54x reduction in trainable parameters compared to SqueezeNet1.1. These findings demonstrate that our SqueezeNet1.1 architecture variants provide a flexible approach to malaria detection, enabling the selection of a variant that balances resource constraints and performance.
A Hybrid Deep Learning CNN Model for Enhanced COVID-19 Detection from Computed Tomography (CT) Scan Images
Nettur, Suresh Babu, Karpurapu, Shanthi, Nettur, Unnati, Gajja, Likhit Sagar, Myneni, Sravanthy, Dusi, Akhil, Posham, Lalithya
Early detection of COVID-19 is crucial for effective treatment and controlling its spread. This study proposes a novel hybrid deep learning model for detecting COVID-19 from CT scan images, designed to assist overburdened medical professionals. Our proposed model leverages the strengths of VGG16, DenseNet121, and MobileNetV2 to extract features, followed by Principal Component Analysis (PCA) for dimensionality reduction, after which the features are stacked and classified using a Support Vector Classifier (SVC). We conducted comparative analysis between the proposed hybrid model and individual pre-trained CNN models, using a dataset of 2,108 training images and 373 test images comprising both COVID-positive and non-COVID images. Our proposed hybrid model achieved an accuracy of 98.93%, outperforming the individual models in terms of precision, recall, F1 scores, and ROC curve performance.