Durrett, Greg
A Long Way to Go: Investigating Length Correlations in RLHF
Singhal, Prasann, Goyal, Tanya, Xu, Jiacheng, Durrett, Greg
Great successes have been reported using Reinforcement Learning from Human Feedback (RLHF) to align large language models. Open-source preference datasets and reward models have enabled wider experimentation beyond generic chat settings, particularly to make systems more "helpful" for tasks like web question answering, summarization, and multi-turn dialogue. When optimizing for helpfulness, RLHF has been consistently observed to drive models to produce longer outputs. This paper demonstrates that optimizing for response length is a significant factor behind RLHF's reported improvements in these settings. First, we study the relationship between reward and length for reward models trained on three open-source preference datasets for helpfulness. Here, length correlates strongly with reward, and improvements in reward score are driven in large part by shifting the distribution over output lengths. We then explore interventions during both RL and reward model learning to see if we can achieve the same downstream improvements as RLHF without increasing length. While our interventions mitigate length increases, they aren't uniformly effective across settings. Furthermore, we find that even running RLHF with a reward based solely on length can reproduce most of the downstream improvements over the initial policy model, showing that reward models in these settings have a long way to go.
X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs
Rodriguez, Juan Diego, Erk, Katrin, Durrett, Greg
Understanding when two pieces of text convey the same information is a goal touching many subproblems in NLP, including textual entailment and fact-checking. This problem becomes more complex when those two pieces of text are in different languages. Here, we introduce X-PARADE (Cross-lingual Paragraph-level Analysis of Divergences and Entailments), the first cross-lingual dataset of paragraph-level information divergences. Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language, indicating whether a given piece of information is the same, new, or new but can be inferred. This last notion establishes a link with cross-language NLI. Aligned paragraphs are sourced from Wikipedia pages in different languages, reflecting real information divergences observed in the wild. Armed with our dataset, we investigate a diverse set of approaches for this problem, including classic token alignment from machine translation, textual entailment methods that localize their decisions, and prompting of large language models. Our results show that these methods vary in their capability to handle inferable information, but they all fall short of human performance.
Deductive Additivity for Planning of Natural Language Proofs
Sprague, Zayne, Bostrom, Kaj, Chaudhuri, Swarat, Durrett, Greg
Current natural language systems designed for multi-step claim validation typically operate in two phases: retrieve a set of relevant premise statements using heuristics (planning), then generate novel conclusions from those statements using a large language model (deduction). The planning step often requires expensive Transformer operations and does not scale to arbitrary numbers of premise statements. In this paper, we investigate whether an efficient planning heuristic is possible via embedding spaces compatible with deductive reasoning. Specifically, we evaluate whether embedding spaces exhibit a property we call deductive additivity: the sum of premise statement embeddings should be close to embeddings of conclusions based on those premises. We explore multiple sources of off-the-shelf dense embeddings in addition to fine-tuned embeddings from GPT3 and sparse embeddings from BM25. We study embedding models both intrinsically, evaluating whether the property of deductive additivity holds, and extrinsically, using them to assist planning in natural language proof generation. Lastly, we create a dataset, Single-Step Reasoning Contrast (SSRC), to further probe performance on various reasoning types. Our findings suggest that while standard embedding methods frequently embed conclusions near the sums of their premises, they fall short of being effective heuristics and lack the ability to model certain categories of reasoning.
Complementary Explanations for Effective In-Context Learning
Ye, Xi, Iyer, Srinivasan, Celikyilmaz, Asli, Stoyanov, Ves, Durrett, Greg, Pasunuru, Ramakanth
Large language models (LLMs) have exhibited remarkable capabilities in learning from explanations in prompts, but there has been limited understanding of exactly how these explanations function or why they are effective. This work aims to better understand the mechanisms by which explanations are used for in-context learning. We first study the impact of two different factors on the performance of prompts with explanations: the computation trace (the way the solution is decomposed) and the natural language used to express the prompt. By perturbing explanations on three controlled tasks, we show that both factors contribute to the effectiveness of explanations. We further study how to form maximally effective sets of explanations for solving a given test query. We find that LLMs can benefit from the complementarity of the explanation set: diverse reasoning skills shown by different exemplars can lead to better performance. Therefore, we propose a maximal marginal relevance-based exemplar selection approach for constructing exemplar sets that are both relevant as well as complementary, which successfully improves the in-context learning performance across three real-world tasks on multiple LLMs.
EEL: Efficiently Encoding Lattices for Reranking
Singhal, Prasann, Xu, Jiacheng, Ye, Xi, Durrett, Greg
Standard decoding approaches for conditional text generation tasks typically search for an output hypothesis with high model probability, but this may not yield the best hypothesis according to human judgments of quality. Reranking to optimize for "downstream" metrics can better optimize for quality, but many metrics of interest are computed with pre-trained language models, which are slow to apply to large numbers of hypotheses. We explore an approach for reranking hypotheses by using Transformers to efficiently encode lattices of generated outputs, a method we call EEL. With a single Transformer pass over the entire lattice, we can approximately compute a contextualized representation of each token as if it were only part of a single hypothesis in isolation. We combine this approach with a new class of token-factored rerankers (TFRs) that allow for efficient extraction of high reranker-scoring hypotheses from the lattice. Empirically, our approach incurs minimal degradation error compared to the exponentially slower approach of encoding each hypothesis individually. When applying EEL with TFRs across three text generation tasks, our results show both substantial speedup compared to naive reranking and often better performance on downstream metrics than comparable approaches.
Less Likely Brainstorming: Using Language Models to Generate Alternative Hypotheses
Tang, Liyan, Peng, Yifan, Wang, Yanshan, Ding, Ying, Durrett, Greg, Rousseau, Justin F.
A human decision-maker benefits the most from an AI assistant that corrects for their biases. For problems such as generating interpretation of a radiology report given findings, a system predicting only highly likely outcomes may be less useful, where such outcomes are already obvious to the user. To alleviate biases in human decision-making, it is worth considering a broad differential diagnosis, going beyond the most likely options. We introduce a new task, "less likely brainstorming," that asks a model to generate outputs that humans think are relevant but less likely to happen. We explore the task in two settings: a brain MRI interpretation generation setting and an everyday commonsense reasoning setting. We found that a baseline approach of training with less likely hypotheses as targets generates outputs that humans evaluate as either likely or irrelevant nearly half of the time; standard MLE training is not effective. To tackle this problem, we propose a controlled text generation method that uses a novel contrastive learning strategy to encourage models to differentiate between generating likely and less likely outputs according to humans. We compare our method with several state-of-the-art controlled text generation models via automatic and human evaluations and show that our models' capability of generating less likely outputs is improved.
Coeditor: Leveraging Contextual Changes for Multi-round Code Auto-editing
Wei, Jiayi, Durrett, Greg, Dillig, Isil
Developers often dedicate significant time to maintaining and refactoring existing code. However, most prior work on generative models for code focuses solely on creating new code, neglecting the unique requirements of editing existing code. In this work, we explore a multi-round code auto-editing setting, aiming to predict edits to a code region based on recent changes within the same codebase. Our model, Coeditor, is a fine-tuned CodeT5 model with enhancements specifically designed for code editing tasks. We encode code changes using a line diff format and employ static analysis to form large customized model contexts, ensuring appropriate information for prediction. We collect a code editing dataset from the commit histories of 1650 open-source Python projects for training and evaluation. In a simplified single-round, single-edit task, Coeditor significantly outperforms the best code completion approach -- nearly doubling its exact-match accuracy, despite using a much smaller model -- demonstrating the benefits of incorporating editing history for code completion. In a multi-round, multi-edit setting, we observe substantial gains by iteratively prompting the model with additional user edits. We open-source our code, data, and model weights to encourage future research and release a VSCode extension powered by our model for interactive usage.
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
Tang, Liyan, Goyal, Tanya, Fabbri, Alexander R., Laban, Philippe, Xu, Jiacheng, Yavuz, Semih, Kryลciลski, Wojciech, Rousseau, Justin F., Durrett, Greg
The propensity of abstractive summarization models to make factual errors has been studied extensively, including design of metrics to detect factual errors and annotation of errors in current systems' outputs. However, the ever-evolving nature of summarization systems, metrics, and annotated benchmarks makes factuality evaluation a moving target, and drawing clear comparisons among metrics has become increasingly difficult. In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model. We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models. Critically, our analysis shows that much of the recent improvement in the factuality detection space has been on summaries from older (pre-Transformer) models instead of more relevant recent summarization models. We further perform a finer-grained analysis per error-type and find similar performance variance across error types for different factuality metrics. Our results show that no one metric is superior in all settings or for all error types, and we provide recommendations for best practices given these insights.
Drafting Event Schemas using Language Models
Gunjal, Anisha, Durrett, Greg
Past work has studied event prediction and event language modeling, sometimes mediated through structured representations of knowledge in the form of event schemas. Such schemas can lead to explainable predictions and forecasting of unseen events given incomplete information. In this work, we look at the process of creating such schemas to describe complex events. We use large language models (LLMs) to draft schemas directly in natural language, which can be further refined by human curators as necessary. Our focus is on whether we can achieve sufficient diversity and recall of key events and whether we can produce the schemas in a sufficiently descriptive style. We show that large language models are able to achieve moderate recall against schemas taken from two different datasets, with even better results when multiple prompts and multiple samples are combined. Moreover, we show that textual entailment methods can be used for both matching schemas to instances of events as well as evaluating overlap between gold and predicted schemas. Our method paves the way for easier distillation of event knowledge from large language model into schemas.
Prompted Opinion Summarization with GPT-3.5
Bhaskar, Adithya, Fabbri, Alexander R., Durrett, Greg
Large language models have shown impressive performance across a wide variety of tasks, including text summarization. In this paper, we show that this strong performance extends to opinion summarization. We explore several pipeline methods for applying GPT-3.5 to summarize a large collection of user reviews in a prompted fashion. To handle arbitrarily large numbers of user reviews, we explore recursive summarization as well as methods for selecting salient content to summarize through supervised clustering or extraction. On two datasets, an aspect-oriented summarization dataset of hotel reviews (SPACE) and a generic summarization dataset of Amazon and Yelp reviews (FewSum), we show that GPT-3.5 models achieve very strong performance in human evaluation. We argue that standard evaluation metrics do not reflect this, and introduce three new metrics targeting faithfulness, factuality, and genericity to contrast these different methods.