Duhan, Tanishq
Deploying Ten Thousand Robots: Scalable Imitation Learning for Lifelong Multi-Agent Path Finding
Jiang, He, Wang, Yutong, Veerapaneni, Rishi, Duhan, Tanishq, Sartoretti, Guillaume, Li, Jiaoyang
Abstract-- Lifelong Multi-Agent Path Finding (LMAPF) is a variant of MAPF where agents are continually assigned new goals, necessitating frequent re-planning to accommodate these dynamic changes. Recently, this field has embraced learning-based methods, which reactively generate single-step actions based on individual local observations. However, it is still challenging for them to match the performance of the best search-based algorithms, especially in large-scale settings. This work proposes an imitation-learning-based LMAPF solver that introduces a novel communication module and systematic single-step collision resolution and global guidance techniques. Details are given in Table III. However, most learning-based solvers have only been tested on small-scale instances involving tens I. Multi-Agent Path Finding (MAPF) [1] is the problem of Additionally, most learning papers emphasize the scalability finding collision-free paths on a given graph for a set of of their solvers compared to optimal or boundedsuboptimal agents, each assigned a start and goal location. This is largely because these search-based new goals to agents that reach their current ones. The main solvers struggle with computational complexity, as solving target of LMAPF is to maximize the throughput, which MAPF optimally is NP-hard.
LNS2+RL: Combining Multi-agent Reinforcement Learning with Large Neighborhood Search in Multi-agent Path Finding
Wang, Yutong, Duhan, Tanishq, Li, Jiaoyang, Sartoretti, Guillaume
Multi-Agent Path Finding (MAPF) is a critical component of logistics and warehouse management, which focuses on planning collision-free paths for a team of robots in a known environment. Recent work introduced a novel MAPF approach, LNS2, which proposed to repair a quickly-obtainable set of infeasible paths via iterative re-planning, by relying on a fast, yet lower-quality, priority-based planner. At the same time, there has been a recent push for Multi-Agent Reinforcement Learning (MARL) based MAPF algorithms, which let agents learn decentralized policies that exhibit improved cooperation over such priority planning, although inevitably remaining slower. In this paper, we introduce a new MAPF algorithm, LNS2+RL, which combines the distinct yet complementary characteristics of LNS2 and MARL to effectively balance their individual limitations and get the best from both worlds. During early iterations, LNS2+RL relies on MARL for low-level re-planning, which we show eliminates collisions much more than a priority-based planner. There, our MARL-based planner allows agents to reason about past and future/predicted information to gradually learn cooperative decision-making through a finely designed curriculum learning. At later stages of planning, LNS2+RL adaptively switches to priority-based planning to quickly resolve the remaining collisions, naturally trading-off solution quality and computational efficiency. Our comprehensive experiments on challenging tasks across various team sizes, world sizes, and map structures consistently demonstrate the superior performance of LNS2+RL compared to many MAPF algorithms, including LNS2, LaCAM, and EECBS. In maps with complex structures, the advantages of LNS2+RL are particularly pronounced, with LNS2+RL achieving a success rate of over 50% in nearly half of the tested tasks, while that of LaCAM and EECBS falls to 0%.
ALPHA: Attention-based Long-horizon Pathfinding in Highly-structured Areas
He, Chengyang, Yang, Tianze, Duhan, Tanishq, Wang, Yutong, Sartoretti, Guillaume
The multi-agent pathfinding (MAPF) problem seeks collision-free paths for a team of agents from their current positions to their pre-set goals in a known environment, and is an essential problem found at the core of many logistics, transportation, and general robotics applications. Existing learning-based MAPF approaches typically only let each agent make decisions based on a limited field-of-view (FOV) around its position, as a natural means to fix the input dimensions of its policy network. However, this often makes policies short-sighted, since agents lack the ability to perceive and plan for obstacles/agents beyond their FOV. To address this challenge, we propose ALPHA, a new framework combining the use of ground truth proximal (local) information and fuzzy distal (global) information to let agents sequence local decisions based on the full current state of the system, and avoid such myopicity. We further allow agents to make short-term predictions about each others' paths, as a means to reason about each others' path intentions, thereby enhancing the level of cooperation among agents at the whole system level. Our neural structure relies on a Graph Transformer architecture to allow agents to selectively combine these different sources of information and reason about their inter-dependencies at different spatial scales. Our simulation experiments demonstrate that ALPHA outperforms both globally-guided MAPF solvers and communication-learning based ones, showcasing its potential towards scalability in realistic deployments.