Duesterwald, Evelyn
DiSTRICT: Dialogue State Tracking with Retriever Driven In-Context Tuning
Venkateswaran, Praveen, Duesterwald, Evelyn, Isahagian, Vatche
Dialogue State Tracking (DST), a key component of task-oriented conversation systems, represents user intentions by determining the values of pre-defined slots in an ongoing dialogue. Existing approaches use hand-crafted templates and additional slot information to fine-tune and prompt large pre-trained language models and elicit slot values from the dialogue context. Significant manual effort and domain knowledge is required to design effective prompts, limiting the generalizability of these approaches to new domains and tasks. In this work, we propose DiSTRICT, a generalizable in-context tuning approach for DST that retrieves highly relevant training examples for a given dialogue to fine-tune the model without any hand-crafted templates. Experiments with the MultiWOZ benchmark datasets show that DiSTRICT outperforms existing approaches in various zero-shot and few-shot settings using a much smaller model, thereby providing an important advantage for real-world deployments that often have limited resource availability.
Exploring the Hyperparameter Landscape of Adversarial Robustness
Duesterwald, Evelyn, Murthi, Anupama, Venkataraman, Ganesh, Sinn, Mathieu, Vijaykeerthy, Deepak
Adversarial training shows promise as an approach for training models that are robust towards adversarial perturbation. In this paper, we explore some of the practical challenges of adversarial training. We present a sensitivity analysis that illustrates that the effectiveness of adversarial training hinges on the settings of a few salient hyperparameters. We show that the robustness surface that emerges across these salient parameters can be surprisingly complex and that therefore no effective one-size-fits-all parameter settings exist. We then demonstrate that we can use the same salient hyperparameters as tuning knob to navigate the tension that can arise between robustness and accuracy. Based on these findings, we present a practical approach that leverages hyperparameter optimization techniques for tuning adversarial training to maximize robustness while keeping the loss in accuracy within a defined budget.