Goto

Collaborating Authors

 Duersch, Jed A.


Curvature in the Looking-Glass: Optimal Methods to Exploit Curvature of Expectation in the Loss Landscape

arXiv.org Machine Learning

Harnessing the local topography of the loss landscape is a central challenge in advanced optimization tasks. By accounting for the effect of potential parameter changes, we can alter the model more efficiently. Contrary to standard assumptions, we find that the Hessian does not always approximate loss curvature well, particularly near gradient discontinuities, which commonly arise in deep learning architectures. We present a new conceptual framework to understand how curvature of expected changes in loss emerges in architectures with many rectified linear units. Each ReLU creates a parameter boundary that, when crossed, induces a pseudorandom gradient perturbation. Our derivations show how these discontinuities combine to form a glass-like structure, similar to amorphous solids that contain microscopic domains of strong, but random, atomic alignment. By estimating the density of the resulting gradient variations, we can bound how the loss may change with parameter movement. Our analysis includes the optimal kernel and sample distribution for approximating glass density from ordinary gradient evaluations. We also derive the optimal modification to quasi-Newton steps that incorporate both glass and Hessian terms, as well as certain exactness properties that are possible with Nesterov-accelerated gradient updates. Our algorithm, Alice, tests these techniques to determine which curvature terms are most impactful for training a given architecture and dataset. Additional safeguards enforce stable exploitation through step bounds that expand on the functionality of Adam. These theoretical and experimental tools lay groundwork to improve future efforts (e.g., pruning and quantization) by providing new insight into the loss landscape.


Projective Integral Updates for High-Dimensional Variational Inference

arXiv.org Machine Learning

Variational inference is an approximation framework for Bayesian inference that seeks to improve quantified uncertainty in predictions by optimizing a simplified distribution over parameters to stand in for the full posterior. Capturing model variations that remain consistent with training data enables more robust predictions by reducing parameter sensitivity. This work introduces a fixed-point optimization for variational inference that is applicable when every feasible log density can be expressed as a linear combination of functions from a given basis. In such cases, the optimizer becomes a fixed-point of projective integral updates. When the basis spans univariate quadratics in each parameter, feasible densities are Gaussian and the projective integral updates yield quasi-Newton variational Bayes (QNVB). Other bases and updates are also possible. As these updates require high-dimensional integration, this work first proposes an efficient quasirandom quadrature sequence for mean-field distributions. Each iterate of the sequence contains two evaluation points that combine to correctly integrate all univariate quadratics and, if the mean-field factors are symmetric, all univariate cubics. More importantly, averaging results over short subsequences achieves periodic exactness on a much larger space of multivariate quadratics. The corresponding variational updates require 4 loss evaluations with standard (not second-order) backpropagation to eliminate error terms from over half of all multivariate quadratic basis functions. This integration technique is motivated by first proposing stochastic blocked mean-field quadratures, which may be useful in other contexts. A PyTorch implementation of QNVB allows for better control over model uncertainty during training than competing methods. Experiments demonstrate superior generalizability for multiple learning problems and architectures.


Parsimonious Inference

arXiv.org Machine Learning

Bayesian inference provides a uniquely rigorous approach to obtain principled justification for uncertainty in predictions, yet it is difficult to articulate suitably general prior belief in the machine learning context, where computational architectures are pure abstractions subject to frequent modifications by practitioners attempting to improve results. Parsimonious inference is an information-theoretic formulation of inference over arbitrary architectures that formalizes Occam's Razor; we prefer simple and sufficient explanations. Our universal hyperprior assigns plausibility to prior descriptions, encoded as sequences of symbols, by expanding on the core relationships between program length, Kolmogorov complexity, and Solomonoff's algorithmic probability. We then cast learning as information minimization over our composite change in belief when an architecture is specified, training data are observed, and model parameters are inferred. By distinguishing model complexity from prediction information, our framework also quantifies the phenomenon of memorization. Although our theory is general, it is most critical when datasets are limited, e.g. small or skewed. We develop novel algorithms for polynomial regression and random forests that are suitable for such data, as demonstrated by our experiments. Our approaches combine efficient encodings with prudent sampling strategies to construct predictive ensembles without cross-validation, thus addressing a fundamental challenge in how to efficiently obtain predictions from data.