Dubossarsky, Haim
A General Framework to Evaluate Methods for Assessing Dimensions of Lexical Semantic Change Using LLM-Generated Synthetic Data
Baes, Naomi, Merx, Raphaël, Haslam, Nick, Vylomova, Ekaterina, Dubossarsky, Haim
Lexical Semantic Change (LSC) offers insights into cultural and social dynamics. Yet, the validity of methods for measuring kinds of LSC has yet to be established due to the absence of historical benchmark datasets. To address this gap, we develop a novel three-stage evaluation framework that involves: 1) creating a scalable, domain-general methodology for generating synthetic datasets that simulate theory-driven LSC across time, leveraging In-Context Learning and a lexical database; 2) using these datasets to evaluate the effectiveness of various methods; and 3) assessing their suitability for specific dimensions and domains. We apply this framework to simulate changes across key dimensions of LSC (SIB: Sentiment, Intensity, and Breadth) using examples from psychology, and evaluate the sensitivity of selected methods to detect these artificially induced changes. Our findings support the utility of the synthetic data approach, validate the efficacy of tailored methods for detecting synthetic changes in SIB, and reveal that a state-of-the-art LSC model faces challenges in detecting affective dimensions of LSC. This framework provides a valuable tool for dimension- and domain-specific bench-marking and evaluation of LSC methods, with particular benefits for the social sciences.
Analyzing Semantic Change through Lexical Replacements
Periti, Francesco, Cassotti, Pierluigi, Dubossarsky, Haim, Tahmasebi, Nina
Modern language models are capable of contextualizing words based on their surrounding context. However, this capability is often compromised due to semantic change that leads to words being used in new, unexpected contexts not encountered during pre-training. In this paper, we model \textit{semantic change} by studying the effect of unexpected contexts introduced by \textit{lexical replacements}. We propose a \textit{replacement schema} where a target word is substituted with lexical replacements of varying relatedness, thus simulating different kinds of semantic change. Furthermore, we leverage the replacement schema as a basis for a novel \textit{interpretable} model for semantic change. We are also the first to evaluate the use of LLaMa for semantic change detection.
(Chat)GPT v BERT: Dawn of Justice for Semantic Change Detection
Periti, Francesco, Dubossarsky, Haim, Tahmasebi, Nina
In the universe of Natural Language Processing, Transformer-based language models like BERT and (Chat)GPT have emerged as lexical superheroes with great power to solve open research problems. In this paper, we specifically focus on the temporal problem of semantic change, and evaluate their ability to solve two diachronic extensions of the Word-in-Context (WiC) task: TempoWiC and HistoWiC. In particular, we investigate the potential of a novel, off-the-shelf technology like ChatGPT (and GPT) 3.5 compared to BERT, which represents a family of models that currently stand as the state-of-the-art for modeling semantic change. Our experiments represent the first attempt to assess the use of (Chat)GPT for studying semantic change. Our results indicate that ChatGPT performs significantly worse than the foundational GPT version. Furthermore, our results demonstrate that (Chat)GPT achieves slightly lower performance than BERT in detecting long-term changes but performs significantly worse in detecting short-term changes.
Logical Reasoning for Natural Language Inference Using Generated Facts as Atoms
Stacey, Joe, Minervini, Pasquale, Dubossarsky, Haim, Camburu, Oana-Maria, Rei, Marek
State-of-the-art neural models can now reach human performance levels across various natural language understanding tasks. However, despite this impressive performance, models are known to learn from annotation artefacts at the expense of the underlying task. While interpretability methods can identify influential features for each prediction, there are no guarantees that these features are responsible for the model decisions. Instead, we introduce a model-agnostic logical framework to determine the specific information in an input responsible for each model decision. This method creates interpretable Natural Language Inference (NLI) models that maintain their predictive power. We achieve this by generating facts that decompose complex NLI observations into individual logical atoms. Our model makes predictions for each atom and uses logical rules to decide the class of the observation based on the predictions for each atom. We apply our method to the highly challenging ANLI dataset, where our framework improves the performance of both a DeBERTa-base and BERT baseline. Our method performs best on the most challenging examples, achieving a new state-of-the-art for the ANLI round 3 test set. We outperform every baseline in a reduced-data setting, and despite using no annotations for the generated facts, our model predictions for individual facts align with human expectations.
Computational modeling of semantic change
Tahmasebi, Nina, Dubossarsky, Haim
In this chapter we provide an overview of computational modeling for semantic change using large and semi-large textual corpora. We aim to provide a key for the interpretation of relevant methods and evaluation techniques, and also provide insights into important aspects of the computational study of semantic change. We discuss the pros and cons of different classes of models with respect to the properties of the data from which one wishes to model semantic change, and which avenues are available to evaluate the results.