Goto

Collaborating Authors

 Duan, Peiyu


Towards Zero-Shot Task-Generalizable Learning on fMRI

arXiv.org Artificial Intelligence

Functional MRI measuring BOLD signal is an increasingly important imaging modality in studying brain functions and neurological disorders. It can be acquired in either a resting-state or a task-based paradigm. Compared to resting-state fMRI, task-based fMRI is acquired while the subject is performing a specific task designed to enhance study-related brain activities. Consequently, it generally has more informative task-dependent signals. However, due to the variety of task designs, it is much more difficult than in resting state to aggregate task-based fMRI acquired in different tasks to train a generalizable model. To resolve this complication, we propose a supervised task-aware network TA-GAT that jointly learns a general-purpose encoder and task-specific contextual information. The encoder-generated embedding and the learned contextual information are then combined as input to multiple modules for performing downstream tasks. We believe that the proposed task-aware architecture can plug-and-play in any neural network architecture to incorporate the prior knowledge of fMRI tasks into capturing functional brain patterns.


STNAGNN: Spatiotemporal Node Attention Graph Neural Network for Task-based fMRI Analysis

arXiv.org Artificial Intelligence

Task-based fMRI uses actions or stimuli to trigger task-specific brain responses and measures them using BOLD contrast. Despite the significant task-induced spatiotemporal brain activation fluctuations, most studies on task-based fMRI ignore the task context information aligned with fMRI and consider task-based fMRI a coherent sequence. In this paper, we show that using the task structures as data-driven guidance is effective for spatiotemporal analysis. We propose STNAGNN, a GNN-based spatiotemporal architecture, and validate its performance in an autism classification task. The trained model is also interpreted for identifying autism-related spatiotemporal brain biomarkers.