Goto

Collaborating Authors

 Duan, Lixin


Minimizing Maximum Model Discrepancy for Transferable Black-box Targeted Attacks

arXiv.org Artificial Intelligence

In this work, we study the black-box targeted attack problem from the model discrepancy perspective. On the theoretical side, we present a generalization error bound for black-box targeted attacks, which gives a rigorous theoretical analysis for guaranteeing the success of the attack. We reveal that the attack error on a target model mainly depends on empirical attack error on the substitute model and the maximum model discrepancy among substitute models. On the algorithmic side, we derive a new algorithm for black-box targeted attacks based on our theoretical analysis, in which we additionally minimize the maximum model discrepancy(M3D) of the substitute models when training the generator to generate adversarial examples. In this way, our model is capable of crafting highly transferable adversarial examples that are robust to the model variation, thus improving the success rate for attacking the black-box model. We conduct extensive experiments on the ImageNet dataset with different classification models, and our proposed approach outperforms existing state-of-the-art methods by a significant margin. Our codes will be released.


Move As You Like: Image Animation in E-Commerce Scenario

arXiv.org Artificial Intelligence

Creative image animations are attractive in e-commerce applications, where motion transfer is one of the import ways to generate animations from static images. However, existing methods rarely transfer motion to objects other than human body or human face, and even fewer apply motion transfer in practical scenarios. In this work, we apply motion transfer on the Taobao product images in real e-commerce scenario to generate creative animations, which are more attractive than static images and they will bring more benefits. We animate the Taobao products of dolls, copper running horses and toy dinosaurs based on motion transfer method for demonstration.


Region Comparison Network for Interpretable Few-shot Image Classification

arXiv.org Artificial Intelligence

While deep learning has been successfully applied to many real-world computer vision tasks, training robust classifiers usually requires a large amount of well-labeled data. However, the annotation is often expensive and time-consuming. Few-shot image classification has thus been proposed to effectively use only a limited number of labeled examples to train models for new classes. Recent works based on transferable metric learning methods have achieved promising classification performance through learning the similarity between the features of samples from the query and support sets. However, rare of them explicitly considers the model interpretability, which can actually be revealed during the training phase. For that, in this work, we propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works as in a neural network as well as to find out specific regions that are related to each other in images coming from the query and support sets. Moreover, we also present a visualization strategy named Region Activation Mapping (RAM) to intuitively explain what our method has learned by visualizing intermediate variables in our network. We also present a new way to generalize the interpretability from the level of tasks to categories, which can also be viewed as a method to find the prototypical parts for supporting the final decision of our RCN. Extensive experiments on four benchmark datasets clearly show the effectiveness of our method over existing baselines.


Reconstruction Regularized Deep Metric Learning for Multi-label Image Classification

arXiv.org Machine Learning

In this paper, we present a novel deep metric learning method to tackle the multi-label image classification problem. In order to better learn the correlations among images features, as well as labels, we attempt to explore a latent space, where images and labels are embedded via two unique deep neural networks, respectively. To capture the relationships between image features and labels, we aim to learn a \emph{two-way} deep distance metric over the embedding space from two different views, i.e., the distance between one image and its labels is not only smaller than those distances between the image and its labels' nearest neighbors, but also smaller than the distances between the labels and other images corresponding to the labels' nearest neighbors. Moreover, a reconstruction module for recovering correct labels is incorporated into the whole framework as a regularization term, such that the label embedding space is more representative. Our model can be trained in an end-to-end manner. Experimental results on publicly available image datasets corroborate the efficacy of our method compared with the state-of-the-arts.


Domain Adversarial Reinforcement Learning for Partial Domain Adaptation

arXiv.org Machine Learning

Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain which relaxes the fully shared label space assumption across different domains. In this more general and practical scenario, a major challenge is how to select source instances in the shared classes across different domains for positive transfer. To address this issue, we propose a Domain Adversarial Reinforcement Learning (DARL) framework to automatically select source instances in the shared classes for circumventing negative transfer as well as to simultaneously learn transferable features between domains by reducing the domain shift. Specifically, in this framework, we employ deep Q-learning to learn policies for an agent to make selection decisions by approximating the action-value function. Moreover, domain adversarial learning is introduced to learn domain-invariant features for the selected source instances by the agent and the target instances, and also to determine rewards for the agent based on how relevant the selected source instances are to the target domain. Experiments on several benchmark datasets demonstrate that the superior performance of our DARL method over existing state of the arts for partial domain adaptation.