Duan, Ling-Yu
DenseFusion-1M: Merging Vision Experts for Comprehensive Multimodal Perception
Li, Xiaotong, Zhang, Fan, Diao, Haiwen, Wang, Yueze, Wang, Xinlong, Duan, Ling-Yu
Existing Multimodal Large Language Models (MLLMs) increasingly emphasize complex understanding of various visual elements, including multiple objects, text information, and spatial relations. Their development for comprehensive visual perception hinges on the availability of high-quality image-text datasets that offer diverse visual elements and throughout image descriptions. However, the scarcity of such hyper-detailed datasets currently hinders progress within the MLLM community. The bottleneck stems from the limited perceptual capabilities of current caption engines, which fall short in providing complete and accurate annotations. To facilitate the cutting-edge research of MLLMs on comprehensive vision perception, we thereby propose Perceptual Fusion, using a low-budget but highly effective caption engine for complete and accurate image descriptions. Specifically, Perceptual Fusion integrates diverse perception experts as image priors to provide explicit information on visual elements and adopts an efficient MLLM as a centric pivot to mimic advanced MLLMs' perception abilities. We carefully select 1M highly representative images from uncurated LAION dataset and generate dense descriptions using our engine, dubbed DenseFusion-1M. Extensive experiments validate that our engine outperforms its counterparts, where the resulting dataset significantly improves the perception and cognition abilities of existing MLLMs across diverse vision-language benchmarks, especially with high-resolution images as inputs. The dataset and code are publicly available at https://github.com/baaivision/DenseFusion.
Fine-tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning
Zhang, Lin, Shen, Li, Ding, Liang, Tao, Dacheng, Duan, Ling-Yu
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint. Data heterogeneity is one of the main challenges in FL, which results in slow convergence and degraded performance. Most existing approaches only tackle the heterogeneity challenge by restricting the local model update in client, ignoring the performance drop caused by direct global model aggregation. Instead, we propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG), which relieves the issue of direct model aggregation. Concretely, FedFTG explores the input space of local models through a generator, and uses it to transfer the knowledge from local models to the global model. Besides, we propose a hard sample mining scheme to achieve effective knowledge distillation throughout the training. In addition, we develop customized label sampling and class-level ensemble to derive maximum utilization of knowledge, which implicitly mitigates the distribution discrepancy across clients. Extensive experiments show that our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
Switchable Representation Learning Framework with Self-compatibility
Wu, Shengsen, Bai, Yan, Lou, Yihang, Linghu, Xiongkun, He, Jianzhong, Duan, Ling-Yu
Real-world visual search systems involve deployments on multiple platforms with different computing and storage resources. Deploying a unified model that suits the minimal-constrain platforms leads to limited accuracy. It is expected to deploy models with different capacities adapting to the resource constraints, which requires features extracted by these models to be aligned in the metric space. The method to achieve feature alignments is called ``compatible learning''. Existing research mainly focuses on the one-to-one compatible paradigm, which is limited in learning compatibility among multiple models. We propose a Switchable representation learning Framework with Self-Compatibility (SFSC). SFSC generates a series of compatible sub-models with different capacities through one training process. The optimization of sub-models faces gradients conflict, and we mitigate this problem from the perspective of the magnitude and direction. We adjust the priorities of sub-models dynamically through uncertainty estimation to co-optimize sub-models properly. Besides, the gradients with conflicting directions are projected to avoid mutual interference. SFSC achieves state-of-the-art performance on the evaluated datasets.
Modeling Uncertain Feature Representation for Domain Generalization
Li, Xiaotong, Hu, Zixuan, Liu, Jun, Ge, Yixiao, Dai, Yongxing, Duan, Ling-Yu
Though deep neural networks have achieved impressive success on various vision tasks, obvious performance degradation still exists when models are tested in out-of-distribution scenarios. In addressing this limitation, we ponder that the feature statistics (mean and standard deviation), which carry the domain characteristics of the training data, can be properly manipulated to improve the generalization ability of deep learning models. Existing methods commonly consider feature statistics as deterministic values measured from the learned features and do not explicitly model the uncertain statistics discrepancy caused by potential domain shifts during testing. In this paper, we improve the network generalization ability by modeling domain shifts with uncertainty (DSU), i.e., characterizing the feature statistics as uncertain distributions during training. Specifically, we hypothesize that the feature statistic, after considering the potential uncertainties, follows a multivariate Gaussian distribution. During inference, we propose an instance-wise adaptation strategy that can adaptively deal with the unforeseeable shift and further enhance the generalization ability of the trained model with negligible additional cost. We also conduct theoretical analysis on the aspects of generalization error bound and the implicit regularization effect, showing the efficacy of our method. Extensive experiments demonstrate that our method consistently improves the network generalization ability on multiple vision tasks, including image classification, semantic segmentation, instance retrieval, and pose estimation. Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints. Code will be released in https://github.com/lixiaotong97/DSU.
Transfer Metric Learning: Algorithms, Applications and Outlooks
Luo, Yong, Wen, Yonggang, Duan, Ling-Yu, Tao, Dacheng
Distance metric learning (DML) aims to find an appropriate way to reveal the underlying data relationship. It is critical in many machine learning, pattern recognition and data mining algorithms, and usually require large amount of label information (such as class labels or pair/triplet constraints) to achieve satisfactory performance. However, the label information may be insufficient in real-world applications due to the high-labeling cost, and DML may fail in this case. Transfer metric learning (TML) is able to mitigate this issue for DML in the domain of interest (target domain) by leveraging knowledge/information from other related domains (source domains). Although achieved a certain level of development, TML has limited success in various aspects such as selective transfer, theoretical understanding, handling complex data, big data and extreme cases. In this survey, we present a systematic review of the TML literature. In particular, we group TML into different categories according to different settings and metric transfer strategies, such as direct metric approximation, subspace approximation, distance approximation, and distribution approximation. A summarization and insightful discussion of the various TML approaches and their applications will be presented. Finally, we indicate some challenges and provide possible future directions.
Affinity Preserving Quantization for Hashing: A Vector Quantization Approach to Learning Compact Binary Codes
Wang, Zhe (Peking University) | Duan, Ling-Yu (Peking University) | Huang, Tiejun (Peking University) | Wen, Gao (Peking University)
Hashing techniques are powerful for approximate nearest neighbour (ANN) search.Existing quantization methods in hashing are all focused on scalar quantization (SQ) which is inferior in utilizing the inherent data distribution.In this paper, we propose a novel vector quantization (VQ) method named affinity preserving quantization (APQ) to improve the quantization quality of projection values, which has significantly boosted the performance of state-of-the-art hashing techniques.In particular, our method incorporates the neighbourhood structure in the pre- and post-projection data space into vector quantization.APQ minimizes the quantization errors of projection values as well as the loss of affinity property of original space.An effective algorithm has been proposed to solve the joint optimization problem in APQ, and the extension to larger binary codes has been resolved by applying product quantization to APQ.Extensive experiments have shown that APQ consistently outperforms the state-of-the-art quantization methods, and has significantly improved the performance of various hashing techniques.
Learning Compact Visual Descriptors for Low Bit Rate Mobile Landmark Search
Duan, Ling-Yu (Peking University) | Chen, Jie (Peking University) | Ji, Rongrong (Peking University) | Huang, Tiejun (Peking University) | Gao, Wen (Peking University)
Coming with the ever growing computational power of mobile devices, mobile visual search have undergone an evolution in techniques and applications. A significant trend is low bit rate visual search, where compact visual descriptors are extracted directly over a mobile and delivered as queries rather than raw images to reduce the query transmission latency. In this article, we introduce our work on low bit rate mobile landmark search, in which a compact yet discriminative landmark image descriptor is extracted by using location context such as GPS, crowd-sourced hotspot WLAN, and cell tower locations. The compactness originates from the bag-of-words image representation, with an offline learning from geotagged photos from online photo sharing websites including Flickr and Panoramio. The learning process involves segmenting the landmark photo collection by discrete geographical regions using Gaussian mixture model, and then boosting a ranking sensitive vocabulary within each region, with an “entropy” based descriptor compactness feedback to refine both phases iteratively. In online search, when entering a geographical region, the codebook in a mobile device are downstream adapted to generate extremely compact descriptors with promising discriminative ability. We have deployed landmark search apps to both HTC and iPhone mobile phones, working over the database of million scale images in typical areas like Beijing, New York, and Barcelona, and others. Our descriptor outperforms alternative compact descriptors (Chen et al. 2009; Chen et al., 2010; Chandrasekhar et al. 2009a; Chandrasekhar et al. 2009b) with significant margins. Beyond landmark search, this article will summarize the MPEG standarization progress of compact descriptor for visual search (CDVS) (Yuri et al. 2010; Yuri et al. 2011) towards application interoperability.