Goto

Collaborating Authors

 Duan, Jianyong


An Entailment Tree Generation Approach for Multimodal Multi-Hop Question Answering with Mixture-of-Experts and Iterative Feedback Mechanism

arXiv.org Artificial Intelligence

With the rise of large-scale language models (LLMs), it is currently popular and effective to convert multimodal information into text descriptions for multimodal multi-hop question answering. However, we argue that the current methods of multi-modal multi-hop question answering still mainly face two challenges: 1) The retrieved evidence containing a large amount of redundant information, inevitably leads to a significant drop in performance due to irrelevant information misleading the prediction. 2) The reasoning process without interpretable reasoning steps makes the model difficult to discover the logical errors for handling complex questions. To solve these problems, we propose a unified LLMs-based approach but without heavily relying on them due to the LLM's potential errors, and innovatively treat multimodal multi-hop question answering as a joint entailment tree generation and question answering problem. Specifically, we design a multi-task learning framework with a focus on facilitating common knowledge sharing across interpretability and prediction tasks while preventing task-specific errors from interfering with each other via mixture of experts. Afterward, we design an iterative feedback mechanism to further enhance both tasks by feeding back the results of the joint training to the LLM for regenerating entailment trees, aiming to iteratively refine the potential answer. Notably, our method has won the first place in the official leaderboard of WebQA (since April 10, 2024), and achieves competitive results on MultimodalQA.


Few-shot Incremental Event Detection

arXiv.org Artificial Intelligence

Event detection tasks can enable the quick detection of events from texts and provide powerful support for downstream natural language processing tasks. Most such methods can only detect a fixed set of predefined event classes. To extend them to detect a new class without losing the ability to detect old classes requires costly retraining of the model from scratch. Incremental learning can effectively solve this problem, but it requires abundant data of new classes. In practice, however, the lack of high-quality labeled data of new event classes makes it difficult to obtain enough data for model training. To address the above mentioned issues, we define a new task, few-shot incremental event detection, which focuses on learning to detect a new event class with limited data, while retaining the ability to detect old classes to the extent possible. We created a benchmark dataset IFSED for the few-shot incremental event detection task based on FewEvent and propose two benchmarks, IFSED-K and IFSED-KP. Experimental results show that our approach has a higher F1-score than baseline methods and is more stable.