Du, Ruijie
Gradient Inversion Attack on Graph Neural Networks
Sinha, Divya Anand, Liu, Yezi, Du, Ruijie, Shen, Yanning
Graph federated learning is of essential importance for training over large graph datasets while protecting data privacy, where each client stores a subset of local graph data, while the server collects the local gradients and broadcasts only the aggregated gradients. Recent studies reveal that a malicious attacker can steal private image data from gradient exchanging of neural networks during federated learning. However, none of the existing works have studied the vulnerability of graph data and graph neural networks under such attack. To answer this question, the present paper studies the problem of whether private data can be recovered from leaked gradients in both node classification and graph classification tasks and { proposes a novel attack named Graph Leakage from Gradients (GLG)}. Two widely-used GNN frameworks are analyzed, namely GCN and GraphSAGE. The effects of different model settings on recovery are extensively discussed. Through theoretical analysis and empirical validation, it is shown that parts of the graph data can be leaked from the gradients.
Long-term Fairness For Real-time Decision Making: A Constrained Online Optimization Approach
Du, Ruijie, Muthirayan, Deepan, Khargonekar, Pramod P., Shen, Yanning
Machine learning (ML) has demonstrated remarkable capabilities across many real-world systems, from predictive modeling to intelligent automation. However, the widespread integration of machine learning also makes it necessary to ensure machine learning-driven decision-making systems do not violate ethical principles and values of society in which they operate. As ML-driven decisions proliferate, particularly in cases involving sensitive attributes such as gender, race, and age, to name a few, the need for equity and impartiality has emerged as a fundamental concern. In situations demanding real-time decision-making, fairness objectives become more nuanced and complex: instantaneous fairness to ensure equity in every time slot, and long-term fairness to ensure fairness over a period of time. There is a growing awareness that real-world systems that operate over long periods and require fairness over different timelines. However, existing approaches mainly address dynamic costs with time-invariant fairness constraints, often disregarding the challenges posed by time-varying fairness constraints. To bridge this gap, this work introduces a framework for ensuring long-term fairness within dynamic decision-making systems characterized by time-varying fairness constraints. We formulate the decision problem with fairness constraints over a period as a constrained online optimization problem. A novel online algorithm, named LoTFair, is presented that solves the problem 'on the fly'. We prove that LoTFair can make overall fairness violations negligible while maintaining the performance over the long run.