Du, Liang
SLIM: Let LLM Learn More and Forget Less with Soft LoRA and Identity Mixture
Han, Jiayi, Du, Liang, Du, Hongwei, Zhou, Xiangguo, Wu, Yiwen, Zheng, Weibo, Han, Donghong
Although many efforts have been made, it is still a challenge to balance the training budget, downstream performance, and the general capabilities of the LLMs in many applications. Training the whole model for downstream tasks is expensive, and could easily result in catastrophic forgetting. By introducing parameter-efficient fine-tuning (PEFT), the training cost could be reduced, but it still suffers from forgetting, and limits the learning on the downstream tasks. To efficiently fine-tune the LLMs with less limitation to their downstream performance while mitigating the forgetting of general capabilities, we propose a novel mixture of expert (MoE) framework based on Soft LoRA and Identity Mixture (SLIM), that allows dynamic routing between LoRA adapters and skipping connection, enables the suppression of forgetting. We adopt weight-yielding with sliding clustering for better out-of-domain distinguish to enhance the routing. We also propose to convert the mixture of low-rank adapters to the model merging formulation and introduce fast dynamic merging of LoRA adapters to keep the general capabilities of the base model. Extensive experiments demonstrate that the proposed SLIM is comparable to the state-of-the-art PEFT approaches on the downstream tasks while achieving the leading performance in mitigating catastrophic forgetting.
Stable Heterogeneous Treatment Effect Estimation across Out-of-Distribution Populations
Zhang, Yuling, Wu, Anpeng, Kuang, Kun, Du, Liang, Sun, Zixun, Wang, Zhi
Heterogeneous treatment effect (HTE) estimation is vital for understanding the change of treatment effect across individuals or subgroups. Most existing HTE estimation methods focus on addressing selection bias induced by imbalanced distributions of confounders between treated and control units, but ignore distribution shifts across populations. Thereby, their applicability has been limited to the in-distribution (ID) population, which shares a similar distribution with the training dataset. In real-world applications, where population distributions are subject to continuous changes, there is an urgent need for stable HTE estimation across out-of-distribution (OOD) populations, which, however, remains an open problem. As pioneers in resolving this problem, we propose a novel Stable Balanced Representation Learning with Hierarchical-Attention Paradigm (SBRL-HAP) framework, which consists of 1) Balancing Regularizer for eliminating selection bias, 2) Independence Regularizer for addressing the distribution shift issue, 3) Hierarchical-Attention Paradigm for coordination between balance and independence. In this way, SBRL-HAP regresses counterfactual outcomes using ID data, while ensuring the resulting HTE estimation can be successfully generalized to out-of-distribution scenarios, thereby enhancing the model's applicability in real-world settings. Extensive experiments conducted on synthetic and real-world datasets demonstrate the effectiveness of our SBRL-HAP in achieving stable HTE estimation across OOD populations, with an average 10% reduction in the error metric PEHE and 11% decrease in the ATE bias, compared to the SOTA methods.
Fast Asymmetric Factorization for Large Scale Multiple Kernel Clustering
Chen, Yan, Du, Liang, Duan, Lei
Kernel methods are extensively employed for nonlinear data clustering, yet their effectiveness heavily relies on selecting suitable kernels and associated parameters, posing challenges in advance determination. In response, Multiple Kernel Clustering (MKC) has emerged as a solution, allowing the fusion of information from multiple base kernels for clustering. However, both early fusion and late fusion methods for large-scale MKC encounter challenges in memory and time constraints, necessitating simultaneous optimization of both aspects. To address this issue, we propose Efficient Multiple Kernel Concept Factorization (EMKCF), which constructs a new sparse kernel matrix inspired by local regression to achieve memory efficiency. EMKCF learns consensus and individual representations by extending orthogonal concept factorization to handle multiple kernels for time efficiency. Experimental results demonstrate the efficiency and effectiveness of EMKCF on benchmark datasets compared to state-of-the-art methods. The proposed method offers a straightforward, scalable, and effective solution for large-scale MKC tasks.
Supervisory Prompt Training
Billa, Jean Ghislain, Oh, Min, Du, Liang
The performance of Large Language Models (LLMs) relies heavily on the quality of prompts, which are often manually engineered and task-specific, making them costly and non-scalable. We propose a novel approach, Supervisory Prompt Training (SPT). SPT automates the generation of highly effective prompts using a dual LLM system. In this system, one LLM, the generator, performs a task while the other, the corrector, provides feedback and generates improved prompts. In contrast to earlier techniques, both the generator and corrector collaboratively and continuously improve their prompts over time. We also introduce the concept of \textit{impact scores} to measure the sentence-level effectiveness of the prompts. Our method was tested on four benchmarks, testing the level of hallucinations in LLMs. Notably, we were able to increase the accuracy of GPT-4 on GSM8K from 65.8\% to 94.1\% (28.3\% increase). SPT advances LLMs by refining prompts to enhance performance and reduce hallucinations, offering an efficient and scalable alternative to traditional model fine-tuning.
Large Language Model Cascades with Mixture of Thoughts Representations for Cost-efficient Reasoning
Yue, Murong, Zhao, Jie, Zhang, Min, Du, Liang, Yao, Ziyu
Large language models (LLMs) such as GPT-4 have exhibited remarkable performance in a variety of tasks, but this strong performance often comes with the high expense of using paid API services. In this paper, we are motivated to study building an LLM cascade to save the cost of using LLMs, particularly for performing reasoning (e.g., mathematical, causal) tasks. Our cascade pipeline follows the intuition that simpler questions can be addressed by a weaker but more affordable LLM, whereas only the challenging questions necessitate the stronger and more expensive LLM. To realize this decision-making, we consider the "answer consistency" of the weaker LLM as a signal of the question difficulty and propose several methods for the answer sampling and consistency checking, including one leveraging a mixture of two thought representations (i.e., Chain-of-Thought and Program-of-Thought). Through experiments on six reasoning benchmark datasets, with GPT-3.5-turbo and GPT-4 being the weaker and stronger LLMs, respectively, we demonstrate that our proposed LLM cascades can achieve performance comparable to using solely the stronger LLM but require only 40% of its cost.
Fair Causal Feature Selection
Ling, Zhaolong, Xu, Enqi, Zhou, Peng, Du, Liang, Yu, Kui, Wu, Xindong
Fair feature selection for classification decision tasks has recently garnered significant attention from researchers. However, existing fair feature selection algorithms fall short of providing a full explanation of the causal relationship between features and sensitive attributes, potentially impacting the accuracy of fair feature identification. To address this issue, we propose a Fair Causal Feature Selection algorithm, called FairCFS. Specifically, FairCFS constructs a localized causal graph that identifies the Markov blankets of class and sensitive variables, to block the transmission of sensitive information for selecting fair causal features. Extensive experiments on seven public real-world datasets validate that FairCFS has comparable accuracy compared to eight state-of-the-art feature selection algorithms, while presenting more superior fairness.
DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for CTR Prediction
Zhu, Chen, Du, Liang, Chen, Hong, Zhao, Shuang, Sun, Zixun, Wang, Xin, Zhu, Wenwu
Click-Through Rate (CTR) prediction is a pivotal task in product and content recommendation, where learning effective feature embeddings is of great significance. However, traditional methods typically learn fixed feature representations without dynamically refining feature representations according to the context information, leading to suboptimal performance. Some recent approaches attempt to address this issue by learning bit-wise weights or augmented embeddings for feature representations, but suffer from uninformative or redundant features in the context. To tackle this problem, inspired by the Global Workspace Theory in conscious processing, which posits that only a specific subset of the product features are pertinent while the rest can be noisy and even detrimental to human-click behaviors, we propose a CTR model that enables Dynamic Embedding Learning with Truncated Conscious Attention for CTR prediction, termed DELTA. DELTA contains two key components: (I) conscious truncation module (CTM), which utilizes curriculum learning to apply adaptive truncation on attention weights to select the most critical feature in the context; (II) explicit embedding optimization (EEO), which applies an auxiliary task during training that directly and independently propagates the gradient from the loss layer to the embedding layer, thereby optimizing the embedding explicitly via linear feature crossing. Extensive experiments on five challenging CTR datasets demonstrate that DELTA achieves new state-of-art performance among current CTR methods.
BatchPrompt: Accomplish more with less
Lin, Jianzhe, Diesendruck, Maurice, Du, Liang, Abraham, Robin
As the ever-increasing token limits of large language models (LLMs) have enabled long context as input, prompting with single data samples might no longer an efficient way. A straightforward strategy improving efficiency is to batch data within the token limit (e.g., 8k for gpt-3.5-turbo; 32k for GPT-4), which we call BatchPrompt. We have two initial observations for prompting with batched data. First, we find that prompting with batched data in longer contexts will inevitably lead to worse performance, compared to single-data prompting. Second, the performance of the language model is significantly correlated with the positions and order of the batched data, due to the corresponding change in decoder context. To retain efficiency and overcome performance loss, we propose Batch Permutation and Ensembling (BPE), and a novel Self-reflection-guided EArly Stopping (SEAS) technique. Our comprehensive experimental evaluation demonstrates that BPE can boost the performance of BatchPrompt with a striking margin on a range of popular NLP tasks, including question answering (Boolq), textual entailment (RTE), and duplicate questions identification (QQP). These performances are even competitive with/higher than single-data prompting(SinglePrompt), while BatchPrompt requires much fewer LLM calls and input tokens (For SinglePrompt v.s. BatchPrompt with batch size 32, using just 9%-16% the number of LLM calls, Boolq accuracy 90.6% to 90.9% with 27.4% tokens, QQP accuracy 87.2% to 88.4% with 18.6% tokens, RTE accuracy 91.5% to 91.1% with 30.8% tokens). To the best of our knowledge, this is the first work to technically improve prompting efficiency of large language models. We hope our simple yet effective approach will shed light on the future research of large language models. The code will be released.
MathPrompter: Mathematical Reasoning using Large Language Models
Imani, Shima, Du, Liang, Shrivastava, Harsh
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks and often provide incorrect answers. Unlike natural language understanding, math problems typically have a single correct answer, making the task of generating accurate solutions more challenging for LLMs. To the best of our knowledge, we are not aware of any LLMs that indicate their level of confidence in their responses which fuels a trust deficit in these models impeding their adoption. To address this deficiency, we propose `MathPrompter', a technique that improves performance of LLMs on arithmetic problems along with increased reliance in the predictions. MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways and thereby raise the confidence level in the output results. This is in contrast to other prompt based CoT methods, where there is no check on the validity of the intermediate steps followed. Our technique improves over state-of-the-art on the MultiArith dataset ($78.7\%\rightarrow92.5\%$) evaluated using 175B parameter GPT-based LLM.
Random vector functional link neural network based ensemble deep learning for short-term load forecasting
Gao, Ruobin, Du, Liang, Suganthan, P. N., Zhou, Qin, Yuen, Kum Fai
Electricity load forecasting is crucial for the power systems' planning and maintenance. However, its un-stationary and non-linear characteristics impose significant difficulties in anticipating future demand. This paper proposes a novel ensemble deep Random Vector Functional Link (edRVFL) network for electricity load forecasting. The weights of hidden layers are randomly initialized and kept fixed during the training process. The hidden layers are stacked to enforce deep representation learning. Then, the model generates the forecasts by ensembling the outputs of each layer. Moreover, we also propose to augment the random enhancement features by empirical wavelet transformation (EWT). The raw load data is decomposed by EWT in a walk-forward fashion, not introducing future data leakage problems in the decomposition process. Finally, all the sub-series generated by the EWT, including raw data, are fed into the edRVFL for forecasting purposes. The proposed model is evaluated on twenty publicly available time series from the Australian Energy Market Operator of the year 2020. The simulation results demonstrate the proposed model's superior performance over eleven forecasting methods in three error metrics and statistical tests on electricity load forecasting tasks.