Goto

Collaborating Authors

 Du, Dehui


Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation

arXiv.org Machine Learning

We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions in general settings, named Exogenous Matching. By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem, enabling its integration with existing conditional distribution modeling approaches. We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks compared to other existing importance sampling methods. We also explore the impact of injecting structural prior knowledge (counterfactual Markov boundaries) on the results. Finally, we apply this method to identifiable proxy SCMs and demonstrate the unbiasedness of the estimates, empirically illustrating the applicability of the method to practical scenarios.


Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown remarkable performance in reasoning tasks but face limitations in mathematical and complex logical reasoning. Existing methods to improve LLMs' logical capabilities either involve traceable or verifiable logical sequences that generate more reliable responses by constructing logical structures yet increase computational costs, or introduces rigid logic template rules, reducing flexibility. In this paper, we propose Reversal of Thought (RoT), a novel framework aimed at enhancing the logical reasoning abilities of LLMs. RoT utilizes a Preference-Guided Reverse Reasoning warm-up strategy, which integrates logical symbols for pseudocode planning through meta-cognitive mechanisms and pairwise preference self-evaluation to generate task-specific prompts solely through demonstrations, aligning with LLMs' cognitive preferences shaped by Reinforcement Learning with Human Feedback (RLHF). Through reverse reasoning, we ultilize a Cognitive Preference Manager to assess knowledge boundaries and further expand LLMs' reasoning capabilities by aggregating solution logic for known tasks and stylistic templates for unknown tasks. Experiments across various tasks demonstrate that RoT surpasses existing baselines in both reasoning accuracy and efficiency.


Spatio-temporal Value Semantics-based Abstraction for Dense Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Intelligent Cyber-Physical Systems (ICPS) represent a specialized form of Cyber-Physical System (CPS) that incorporates intelligent components, notably Convolutional Neural Networks (CNNs) and Deep Reinforcement Learning (DRL), to undertake multifaceted tasks encompassing perception, decision-making, and control. The utilization of DRL for decision-making facilitates dynamic interaction with the environment, generating control actions aimed at maximizing cumulative rewards. Nevertheless, the inherent uncertainty of the operational environment and the intricate nature of ICPS necessitate exploration within complex and dynamic state spaces during the learning phase. DRL confronts challenges in terms of efficiency, generalization capabilities, and data scarcity during decision-making process. In response to these challenges, we propose an innovative abstract modeling approach grounded in spatial-temporal value semantics, capturing the evolution in the distribution of semantic value across time and space. A semantics-based abstraction is introduced to construct an abstract Markov Decision Process (MDP) for the DRL learning process. Furthermore, optimization techniques for abstraction are delineated, aiming to refine the abstract model and mitigate semantic gaps between abstract and concrete states. The efficacy of the abstract modeling is assessed through the evaluation and analysis of the abstract MDP model using PRISM. A series of experiments are conducted, involving diverse scenarios such as lane-keeping, adaptive cruise control, and intersection crossroad assistance, to demonstrate the effectiveness of our abstracting approach.


CIER: A Novel Experience Replay Approach with Causal Inference in Deep Reinforcement Learning

arXiv.org Artificial Intelligence

In the training process of Deep Reinforcement Learning (DRL), agents require repetitive interactions with the environment. With an increase in training volume and model complexity, it is still a challenging problem to enhance data utilization and explainability of DRL training. This paper addresses these challenges by focusing on the temporal correlations within the time dimension of time series. We propose a novel approach to segment multivariate time series into meaningful subsequences and represent the time series based on these subsequences. Furthermore, the subsequences are employed for causal inference to identify fundamental causal factors that significantly impact training outcomes. We design a module to provide feedback on the causality during DRL training. Several experiments demonstrate the feasibility of our approach in common environments, confirming its ability to enhance the effectiveness of DRL training and impart a certain level of explainability to the training process. Additionally, we extended our approach with priority experience replay algorithm, and experimental results demonstrate the continued effectiveness of our approach.


MCNS: Mining Causal Natural Structures Inside Time Series via A Novel Internal Causality Scheme

arXiv.org Artificial Intelligence

Causal inference permits us to discover covert relationships of various variables in time series. However, in most existing works, the variables mentioned above are the dimensions. The causality between dimensions could be cursory, which hinders the comprehension of the internal relationship and the benefit of the causal graph to the neural networks (NNs). In this paper, we find that causality exists not only outside but also inside the time series because it reflects a succession of events in the real world. It inspires us to seek the relationship between internal subsequences. However, the challenges are the hardship of discovering causality from subsequences and utilizing the causal natural structures to improve NNs. To address these challenges, we propose a novel framework called Mining Causal Natural Structure (MCNS), which is automatic and domain-agnostic and helps to find the causal natural structures inside time series via the internal causality scheme. We evaluate the MCNS framework and impregnation NN with MCNS on time series classification tasks. Experimental results illustrate that our impregnation, by refining attention, shape selection classification, and pruning datasets, drives NN, even the data itself preferable accuracy and interpretability. Besides, MCNS provides an in-depth, solid summary of the time series and datasets.


Meta Pattern Concern Score: A Novel Evaluation Measure with Human Values for Multi-classifiers

arXiv.org Artificial Intelligence

While advanced classifiers have been increasingly used in real-world safety-critical applications, how to properly evaluate the black-box models given specific human values remains a concern in the community. Such human values include punishing error cases of different severity in varying degrees and making compromises in general performance to reduce specific dangerous cases. In this paper, we propose a novel evaluation measure named Meta Pattern Concern Score based on the abstract representation of probabilistic prediction and the adjustable threshold for the concession in prediction confidence, to introduce the human values into multi-classifiers. Technically, we learn from the advantages and disadvantages of two kinds of common metrics, namely the confusion matrix-based evaluation measures and the loss values, so that our measure is effective as them even under general tasks, and the cross entropy loss becomes a special case of our measure in the limit. Besides, our measure can also be used to refine the model training by dynamically adjusting the learning rate. The experiments on four kinds of models and six datasets confirm the effectiveness and efficiency of our measure. And a case study shows it can not only find the ideal model reducing 0.53% of dangerous cases by only sacrificing 0.04% of training accuracy, but also refine the learning rate to train a new model averagely outperforming the original one with a 1.62% lower value of itself and 0.36% fewer number of dangerous cases.


TSFool: Crafting Highly-imperceptible Adversarial Time Series through Multi-objective Black-box Attack to Fool RNN Classifiers

arXiv.org Artificial Intelligence

Neural network (NN) classifiers are vulnerable to adversarial attacks. Although the existing gradient-based attacks achieve state-of-the-art performance in feed-forward NNs and image recognition tasks, they do not perform as well on time series classification with recurrent neural network (RNN) models. This is because the cyclical structure of RNN prevents direct model differentiation and the visual sensitivity of time series data to perturbations challenges the traditional local optimization objective of the adversarial attack. In this paper, a black-box method called TSFool is proposed to efficiently craft highly-imperceptible adversarial time series for RNN classifiers. We propose a novel global optimization objective named Camouflage Coefficient to consider the imperceptibility of adversarial samples from the perspective of class distribution, and accordingly refine the adversarial attack as a multi-objective optimization problem to enhance the perturbation quality. To get rid of the dependence on gradient information, we also propose a new idea that introduces a representation model for RNN to capture deeply embedded vulnerable samples having otherness between their features and latent manifold, based on which the optimization solution can be heuristically approximated. Experiments on 10 UCR datasets are conducted to confirm that TSFool averagely outperforms existing methods with a 46.3% higher attack success rate, 87.4% smaller perturbation and 25.6% better Camouflage Coefficient at a similar time cost.