Goto

Collaborating Authors

 Drozdova, Mariia


Semi-Supervised Fine-Tuning of Vision Foundation Models with Content-Style Decomposition

arXiv.org Artificial Intelligence

In this paper, we present a semi-supervised fine-tuning approach designed to improve the performance of pre-trained foundation models on downstream tasks with limited labeled data. By leveraging content-style decomposition within an information-theoretic framework, our method enhances the latent representations of pre-trained vision foundation models, aligning them more effectively with specific task objectives and addressing the problem of distribution shift. We evaluate our approach on multiple datasets, including MNIST, its augmented variations (with yellow and white stripes), CIFAR-10, SVHN, and GalaxyMNIST. The experiments show improvements over supervised finetuning baseline of pre-trained models, particularly in low-labeled data regimes, across both frozen and trainable backbones for the majority of the tested datasets.


Radio-astronomical Image Reconstruction with Conditional Denoising Diffusion Model

arXiv.org Artificial Intelligence

Reconstructing sky models from dirty radio images for accurate source localization and flux estimation is crucial for studying galaxy evolution at high redshift, especially in deep fields using instruments like the Atacama Large Millimetre Array (ALMA). With new projects like the Square Kilometre Array (SKA), there's a growing need for better source extraction methods. Current techniques, such as CLEAN and PyBDSF, often fail to detect faint sources, highlighting the need for more accurate methods. This study proposes using stochastic neural networks to rebuild sky models directly from dirty images. This method can pinpoint radio sources and measure their fluxes with related uncertainties, marking a potential improvement in radio source characterization. We tested this approach on 10164 images simulated with the CASA tool simalma, based on ALMA's Cycle 5.3 antenna setup. We applied conditional Denoising Diffusion Probabilistic Models (DDPMs) for sky models reconstruction, then used Photutils to determine source coordinates and fluxes, assessing the model's performance across different water vapor levels. Our method showed excellence in source localization, achieving more than 90% completeness at a signal-to-noise ratio (SNR) as low as 2. It also surpassed PyBDSF in flux estimation, accurately identifying fluxes for 96% of sources in the test set, a significant improvement over CLEAN+ PyBDSF's 57%. Conditional DDPMs is a powerful tool for image-to-image translation, yielding accurate and robust characterisation of radio sources, and outperforming existing methodologies. While this study underscores its significant potential for applications in radio astronomy, we also acknowledge certain limitations that accompany its usage, suggesting directions for further refinement and research.


Turbo-Sim: a generalised generative model with a physical latent space

arXiv.org Machine Learning

We present Turbo-Sim, a generalised autoencoder framework derived from principles of information theory that can be used as a generative model. By maximising the mutual information between the input and the output of both the encoder and the decoder, we are able to rediscover the loss terms usually found in adversarial autoencoders and generative adversarial networks, as well as various more sophisticated related models. Our generalised framework makes these models mathematically interpretable and allows for a diversity of new ones by setting the weight of each loss term separately. The framework is also independent of the intrinsic architecture of the encoder and the decoder thus leaving a wide choice for the building blocks of the whole network. We apply Turbo-Sim to a collider physics generation problem: the transformation of the properties of several particles from a theory space, right after the collision, to an observation space, right after the detection in an experiment.