Goto

Collaborating Authors

 Dreyer, Markus


NewsQs: Multi-Source Question Generation for the Inquiring Mind

arXiv.org Artificial Intelligence

We present NewsQs (news-cues), a dataset that provides question-answer pairs for multiple news documents. To create NewsQs, we augment a traditional multi-document summarization dataset with questions automatically generated by a T5-Large model fine-tuned on FAQ-style news articles from the News On the Web corpus. We show that fine-tuning a model with control codes produces questions that are judged acceptable more often than the same model without them as measured through human evaluation. We use a QNLI model with high correlation with human annotations to filter our data. We release our final dataset of high-quality questions, answers, and document clusters as a resource for future work in query-based multi-document summarization.


Background Summarization of Event Timelines

arXiv.org Artificial Intelligence

Generating concise summaries of news events is a challenging natural language processing task. While journalists often curate timelines to highlight key sub-events, newcomers to a news event face challenges in catching up on its historical context. In this paper, we address this need by introducing the task of background news summarization, which complements each timeline update with a background summary of relevant preceding events. We construct a dataset by merging existing timeline datasets and asking human annotators to write a background summary for each timestep of each news event. We establish strong baseline performance using state-of-the-art summarization systems and propose a query-focused variant to generate background summaries. To evaluate background summary quality, we present a question-answering-based evaluation metric, Background Utility Score (BUS), which measures the percentage of questions about a current event timestep that a background summary answers. Our experiments show the effectiveness of instruction fine-tuned systems such as Flan-T5, in addition to strong zero-shot performance using GPT-3.5.


Generating Summaries with Controllable Readability Levels

arXiv.org Artificial Intelligence

Readability refers to how easily a reader can understand a written text. Several factors affect the readability level, such as the complexity of the text, its subject matter, and the reader's background knowledge. Generating summaries based on different readability levels is critical for enabling knowledge consumption by diverse audiences. However, current text generation approaches lack refined control, resulting in texts that are not customized to readers' proficiency levels. In this work, we bridge this gap and study techniques to generate summaries at specified readability levels. Unlike previous methods that focus on a specific readability level (e.g., lay summarization), we generate summaries with fine-grained control over their readability. We develop three text generation techniques for controlling readability: (1) instruction-based readability control, (2) reinforcement learning to minimize the gap between requested and observed readability and (3) a decoding approach that uses lookahead to estimate the readability of upcoming decoding steps. We show that our generation methods significantly improve readability control on news summarization (CNN/DM dataset), as measured by various readability metrics and human judgement, establishing strong baselines for controllable readability in summarization.


On Conditional and Compositional Language Model Differentiable Prompting

arXiv.org Artificial Intelligence

Prompts have been shown to be an effective method to adapt a frozen Pretrained Language Model (PLM) to perform well on downstream tasks. Prompts can be represented by a human-engineered word sequence or by a learned continuous embedding. In this work, we investigate conditional and compositional differentiable prompting. We propose a new model, Prompt Production System (PRopS), which learns to transform task instructions or input metadata, into continuous prompts that elicit task-specific outputs from the PLM. Our model uses a modular network structure based on our neural formulation of Production Systems, which allows the model to learn discrete rules -- neural functions that learn to specialize in transforming particular prompt input patterns, making it suitable for compositional transfer learning and few-shot learning. We present extensive empirical and theoretical analysis and show that PRopS consistently surpasses other PLM adaptation techniques, and often improves upon fully fine-tuned models, on compositional generalization tasks, controllable summarization and multilingual translation, while needing fewer trainable parameters.


Evaluating the Tradeoff Between Abstractiveness and Factuality in Abstractive Summarization

arXiv.org Artificial Intelligence

Neural models for abstractive summarization tend to generate output that is fluent and well-formed but lacks semantic faithfulness, or factuality, with respect to the input documents. In this paper, we analyze the tradeoff between abstractiveness and factuality of generated summaries across multiple datasets and models, using extensive human evaluations of factuality. In our analysis, we visualize the rates of change in factuality as we gradually increase abstractiveness using a decoding constraint, and we observe that, while increased abstractiveness generally leads to a drop in factuality, the rate of factuality decay depends on factors such as the data that the system was trained on. We introduce two datasets with human factuality judgements; one containing 10.2k generated summaries with systematically varied degrees of abstractiveness; the other containing 4.2k summaries from five different summarization models. We propose new factuality metrics that adjust for the degree of abstractiveness, and we use them to compare the abstractiveness-adjusted factuality of previous summarization works, providing baselines for future work.


Faithfulness-Aware Decoding Strategies for Abstractive Summarization

arXiv.org Artificial Intelligence

Despite significant progress in understanding and improving faithfulness in abstractive summarization, the question of how decoding strategies affect faithfulness is less studied. We present a systematic study of the effect of generation techniques such as beam search and nucleus sampling on faithfulness in abstractive summarization. We find a consistent trend where beam search with large beam sizes produces the most faithful summaries while nucleus sampling generates the least faithful ones. We propose two faithfulness-aware generation methods to further improve faithfulness over current generation techniques: (1) ranking candidates generated by beam search using automatic faithfulness metrics and (2) incorporating lookahead heuristics that produce a faithfulness score on the future summary. We show that both generation methods significantly improve faithfulness across two datasets as evaluated by four automatic faithfulness metrics and human evaluation. To reduce computational cost, we demonstrate a simple distillation approach that allows the model to generate faithful summaries with just greedy decoding. Our code is publicly available at https://github.com/amazon-science/faithful-summarization-generation


FactGraph: Evaluating Factuality in Summarization with Semantic Graph Representations

arXiv.org Artificial Intelligence

Despite recent improvements in abstractive summarization, most current approaches generate summaries that are not factually consistent with the source document, severely restricting their trust and usage in real-world applications. Recent works have shown promising improvements in factuality error identification using text or dependency arc entailments; however, they do not consider the entire semantic graph simultaneously. To this end, we propose FactGraph, a method that decomposes the document and the summary into structured meaning representations (MR), which are more suitable for factuality evaluation. MRs describe core semantic concepts and their relations, aggregating the main content in both document and summary in a canonical form, and reducing data sparsity. FactGraph encodes such graphs using a graph encoder augmented with structure-aware adapters to capture interactions among the concepts based on the graph connectivity, along with text representations using an adapter-based text encoder. Experiments on different benchmarks for evaluating factuality show that FactGraph outperforms previous approaches by up to 15%. Furthermore, FactGraph improves performance on identifying content verifiability errors and better captures subsentence-level factual inconsistencies.


Transductive Learning for Abstractive News Summarization

arXiv.org Artificial Intelligence

Pre-trained language models have recently advanced abstractive summarization. These models are further fine-tuned on human-written references before summary generation in test time. In this work, we propose the first application of transductive learning to summarization. In this paradigm, a model can learn from the test set's input before inference. To perform transduction, we propose to utilize input document summarizing sentences to construct references for learning in test time. These sentences are often compressed and fused to form abstractive summaries and provide omitted details and additional context to the reader. We show that our approach yields state-of-the-art results on CNN/DM and NYT datasets. For instance, we achieve over 1 ROUGE-L point improvement on CNN/DM. Further, we show the benefits of transduction from older to more recent news. Finally, through human and automatic evaluation, we show that our summaries become more abstractive and coherent.


Multi-Task Networks With Universe, Group, and Task Feature Learning

arXiv.org Artificial Intelligence

We present methods for multi-task learning that take advantage of natural groupings of related tasks. Task groups may be defined along known properties of the tasks, such as task domain or language. Such task groups represent supervised information at the inter-task level and can be encoded into the model. We investigate two variants of neural network architectures that accomplish this, learning different feature spaces at the levels of individual tasks, task groups, as well as the universe of all tasks: (1) parallel architectures encode each input simultaneously into feature spaces at different levels; (2) serial architectures encode each input successively into feature spaces at different levels in the task hierarchy. We demonstrate the methods on natural language understanding (NLU) tasks, where a grouping of tasks into different task domains leads to improved performance on ATIS, Snips, and a large inhouse dataset.