Goto

Collaborating Authors

 Dresdner, Gideon


Probabilistic Precipitation Downscaling with Optical Flow-Guided Diffusion

arXiv.org Machine Learning

In climate science and meteorology, local precipitation predictions are limited by the immense computational costs induced by the high spatial resolution that simulation methods require. A common workaround is statistical downscaling (aka superresolution), where a low-resolution prediction is super-resolved using statistical approaches. While traditional computer vision tasks mainly focus on human perception or mean squared error, applications in weather and climate require capturing the conditional distribution of high-resolution patterns given low-resolution patterns so that reliable ensemble averages can be taken. Our approach relies on extending recent video diffusion models to precipitation superresolution: an optical flow on the high-resolution output induces temporally coherent predictions, whereas a temporally-conditioned diffusion model generates residuals that capture the correct noise characteristics and high-frequency patterns. We test our approach on X-SHiELD, an established large-scale climate simulation dataset, and compare against two state-of-the-art baselines, focusing on CRPS, MSE, precipitation distributions, as well as an illustrative case -- the complex terrain of California. Our approach sets a new standard for data-driven precipitation downscaling.


ACE: A fast, skillful learned global atmospheric model for climate prediction

arXiv.org Artificial Intelligence

Existing ML-based atmospheric models are not suitable for climate prediction, which requires long-term stability and physical consistency. We present ACE (AI2 Climate Emulator), a 200M-parameter, autoregressive machine learning emulator of an existing comprehensive 100-km resolution global atmospheric model. The formulation of ACE allows evaluation of physical laws such as the conservation of mass and moisture. The emulator is stable for 100 years, nearly conserves column moisture without explicit constraints and faithfully reproduces the reference model's climate, outperforming a challenging baseline on over 90% of tracked variables. ACE requires nearly 100x less wall clock time and is 100x more energy efficient than the reference model using typically available resources. Without fine-tuning, ACE can stably generalize to a previously unseen historical sea surface temperature dataset.


Learning to correct spectral methods for simulating turbulent flows

arXiv.org Artificial Intelligence

Despite their ubiquity throughout science and engineering, only a handful of partial differential equations (PDEs) have analytical, or closed-form solutions. This motivates a vast amount of classical work on numerical simulation of PDEs and more recently, a whirlwind of research into data-driven techniques leveraging machine learning (ML). A recent line of work indicates that a hybrid of classical numerical techniques and machine learning can offer significant improvements over either approach alone. In this work, we show that the choice of the numerical scheme is crucial when incorporating physics-based priors. We build upon Fourier-based spectral methods, which are known to be more efficient than other numerical schemes for simulating PDEs with smooth and periodic solutions. Specifically, we develop ML-augmented spectral solvers for three common PDEs of fluid dynamics. Our models are more accurate (2-4x) than standard spectral solvers at the same resolution but have longer overall runtimes (~2x), due to the additional runtime cost of the neural network component. We also demonstrate a handful of key design principles for combining machine learning and numerical methods for solving PDEs.


Boosting Variational Inference With Locally Adaptive Step-Sizes

arXiv.org Machine Learning

Variational Inference makes a trade-off between the capacity of the variational family and the tractability of finding an approximate posterior distribution. Instead, Boosting Variational Inference allows practitioners to obtain increasingly good posterior approximations by spending more compute. The main obstacle to widespread adoption of Boosting Variational Inference is the amount of resources necessary to improve over a strong Variational Inference baseline. In our work, we trace this limitation back to the global curvature of the KL-divergence. We characterize how the global curvature impacts time and memory consumption, address the problem with the notion of local curvature, and provide a novel approximate backtracking algorithm for estimating local curvature. We give new theoretical convergence rates for our algorithms and provide experimental validation on synthetic and real-world datasets.


Boosting Black Box Variational Inference

Neural Information Processing Systems

Approximating a probability density in a tractable manner is a central task in Bayesian statistics. Variational Inference (VI) is a popular technique that achieves tractability by choosing a relatively simple variational approximation. Borrowing ideas from the classic boosting framework, recent approaches attempt to \emph{boost} VI by replacing the selection of a single density with an iteratively constructed mixture of densities. In order to guarantee convergence, previous works impose stringent assumptions that require significant effort for practitioners. Specifically, they require a custom implementation of the greedy step (called the LMO) for every probabilistic model with respect to an unnatural variational family of truncated distributions. Our work fixes these issues with novel theoretical and algorithmic insights. On the theoretical side, we show that boosting VI satisfies a relaxed smoothness assumption which is sufficient for the convergence of the functional Frank-Wolfe (FW) algorithm. Furthermore, we rephrase the LMO problem and propose to maximize the Residual ELBO (RELBO) which replaces the standard ELBO optimization in VI. These theoretical enhancements allow for black box implementation of the boosting subroutine. Finally, we present a stopping criterion drawn from the duality gap in the classic FW analyses and exhaustive experiments to illustrate the usefulness of our theoretical and algorithmic contributions.


Boosting Black Box Variational Inference

Neural Information Processing Systems

Approximating a probability density in a tractable manner is a central task in Bayesian statistics. Variational Inference (VI) is a popular technique that achieves tractability by choosing a relatively simple variational approximation. Borrowing ideas from the classic boosting framework, recent approaches attempt to \emph{boost} VI by replacing the selection of a single density with an iteratively constructed mixture of densities. In order to guarantee convergence, previous works impose stringent assumptions that require significant effort for practitioners. Specifically, they require a custom implementation of the greedy step (called the LMO) for every probabilistic model with respect to an unnatural variational family of truncated distributions. Our work fixes these issues with novel theoretical and algorithmic insights. On the theoretical side, we show that boosting VI satisfies a relaxed smoothness assumption which is sufficient for the convergence of the functional Frank-Wolfe (FW) algorithm. Furthermore, we rephrase the LMO problem and propose to maximize the Residual ELBO (RELBO) which replaces the standard ELBO optimization in VI. These theoretical enhancements allow for black box implementation of the boosting subroutine. Finally, we present a stopping criterion drawn from the duality gap in the classic FW analyses and exhaustive experiments to illustrate the usefulness of our theoretical and algorithmic contributions.


Scalable Gaussian Processes on Discrete Domains

arXiv.org Artificial Intelligence

Kernel methods on discrete domains have shown great promise for many challenging tasks, e.g., on biological sequence data as well as on molecular structures. Scalable kernel methods like support vector machines offer good predictive performances but they often do not provide uncertainty estimates. In contrast, probabilistic kernel methods like Gaussian Processes offer uncertainty estimates in addition to good predictive performance but fall short in terms of scalability. We present the first sparse Gaussian Process approximation framework on discrete input domains. Our framework achieves good predictive performance as well as uncertainty estimates using different discrete optimization techniques. We present competitive results comparing our framework to support vector machine and full Gaussian Process baselines on synthetic data as well as on challenging real-world DNA sequence data.


Boosting Black Box Variational Inference

arXiv.org Machine Learning

Approximating a probability density in a tractable manner is a central task in Bayesian statistics. Variational Inference (VI) is a popular technique that achieves tractability by choosing a relatively simple variational family. Borrowing ideas from the classic boosting framework, recent approaches attempt to \emph{boost} VI by replacing the selection of a single density with a greedily constructed mixture of densities. In order to guarantee convergence, previous works impose stringent assumptions that require significant effort for practitioners. Specifically, they require a custom implementation of the greedy step (called the LMO) for every probabilistic model with respect to an unnatural variational family of truncated distributions. Our work fixes these issues with novel theoretical and algorithmic insights. On the theoretical side, we show that boosting VI satisfies a relaxed smoothness assumption which is sufficient for the convergence of the functional Frank-Wolfe (FW) algorithm. Furthermore, we rephrase the LMO problem and propose to maximize the Residual ELBO (RELBO) which replaces the standard ELBO optimization in VI. These theoretical enhancements allow for black box implementation of the boosting subroutine. Finally, we present a stopping criterion drawn from the duality gap in the classic FW analyses and exhaustive experiments to illustrate the usefulness of our theoretical and algorithmic contributions.