Goto

Collaborating Authors

 Dreksler, Noemi


Effective Mitigations for Systemic Risks from General-Purpose AI

arXiv.org Artificial Intelligence

The systemic risks posed by general-purpose AI models are a growing concern, yet the effectiveness of mitigations remains underexplored. Previous research has proposed frameworks for risk mitigation, but has left gaps in our understanding of the perceived effectiveness of measures for mitigating systemic risks. Our study addresses this gap by evaluating how experts perceive different mitigations that aim to reduce the systemic risks of general-purpose AI models. We surveyed 76 experts whose expertise spans AI safety; critical infrastructure; democratic processes; chemical, biological, radiological, and nuclear risks (CBRN); and discrimination and bias. Among 27 mitigations identified through a literature review, we find that a broad range of risk mitigation measures are perceived as effective in reducing various systemic risks and technically feasible by domain experts. In particular, three mitigation measures stand out: safety incident reports and security information sharing, third-party pre-deployment model audits, and pre-deployment risk assessments. These measures show both the highest expert agreement ratings (>60\%) across all four risk areas and are most frequently selected in experts' preferred combinations of measures (>40\%). The surveyed experts highlighted that external scrutiny, proactive evaluation and transparency are key principles for effective mitigation of systemic risks. We provide policy recommendations for implementing the most promising measures, incorporating the qualitative contributions from experts. These insights should inform regulatory frameworks and industry practices for mitigating the systemic risks associated with general-purpose AI.


Open-Sourcing Highly Capable Foundation Models: An evaluation of risks, benefits, and alternative methods for pursuing open-source objectives

arXiv.org Artificial Intelligence

Recent decisions by leading AI labs to either open-source their models or to restrict access to their models has sparked debate about whether, and how, increasingly capable AI models should be shared. Open-sourcing in AI typically refers to making model architecture and weights freely and publicly accessible for anyone to modify, study, build on, and use. This offers advantages such as enabling external oversight, accelerating progress, and decentralizing control over AI development and use. However, it also presents a growing potential for misuse and unintended consequences. This paper offers an examination of the risks and benefits of open-sourcing highly capable foundation models. While open-sourcing has historically provided substantial net benefits for most software and AI development processes, we argue that for some highly capable foundation models likely to be developed in the near future, open-sourcing may pose sufficiently extreme risks to outweigh the benefits. In such a case, highly capable foundation models should not be open-sourced, at least not initially. Alternative strategies, including non-open-source model sharing options, are explored. The paper concludes with recommendations for developers, standard-setting bodies, and governments for establishing safe and responsible model sharing practices and preserving open-source benefits where safe.