Draief, Moez
Reinforcement Learning with Wasserstein Distance Regularisation, with Applications to Multipolicy Learning
Abdullah, Mohammed Amin, Pacchiano, Aldo, Draief, Moez
We describe an application of Wasserstein distance to Reinforcement Learning. The Wasserstein distance in question is between the distribution of mappings of trajectories of a policy into some metric space, and some other fixed distribution (which may, for example, come from another policy). Different policies induce different distributions, so given an underlying metric, the Wasserstein distance quantifies how different policies are. This can be used to learn multiple polices which are different in terms of such Wasserstein distances by using a Wasserstein regulariser. Changing the sign of the regularisation parameter, one can learn a policy for which its trajectory mapping distribution is attracted to a given fixed distribution.
Parallel Contextual Bandits in Wireless Handover Optimization
Colin, Igor, Thomas, Albert, Draief, Moez
Abstract--As cellular networks become denser, a scalable and dynamic tuning of wireless base station parameters can only be achieved through automated optimization. Although the contextual banditframework arises as a natural candidate for such a task, its extension to a parallel setting is not straightforward: one needs to carefully adapt existing methods to fully leverage the multi-agent structure of this problem. We propose two approaches: one derived from a deterministic UCB-like method and the other relying on Thompson sampling. Thanks to its bayesian nature, the latter is intuited to better preserve the exploration-exploitation balance in the bandit batch. This is verified on toy experiments, where Thompson sampling shows robustness to the variability of the contexts. Finally, we apply both methods on a real base station network dataset and evidence that Thompson sampling outperforms both manual tuning and contextual UCB. I. INTRODUCTION The land area covered by a cellular wireless network, such as a mobile phone network, is divided into small areas called cells, each cell being covered by the antenna of a fixed base station (see Figure 1).
KONG: Kernels for ordered-neighborhood graphs
Draief, Moez, Kutzkov, Konstantin, Scaman, Kevin, Vojnovic, Milan
We present novel graph kernels for graphs with node and edge labels that have ordered neighborhoods, i.e. when neighbor nodes follow an order. Graphs with ordered neighborhoods are a natural data representation for evolving graphs where edges are created over time, which induces an order. Combining convolutional subgraph kernels and string kernels, we design new scalable algorithms for generation of explicit graph feature maps using sketching techniques. We obtain precise bounds for the approximation accuracy and computational complexity of the proposed approaches and demonstrate their applicability on real datasets. In particular, our experiments demonstrate that neighborhood ordering results in more informative features. For the special case of general graphs, i.e. graphs without ordered neighborhoods, the new graph kernels yield efficient and simple algorithms for the comparison of label distributions between graphs.
KONG: Kernels for ordered-neighborhood graphs
Draief, Moez, Kutzkov, Konstantin, Scaman, Kevin, Vojnovic, Milan
We present novel graph kernels for graphs with node and edge labels that have ordered neighborhoods, i.e. when neighbor nodes follow an order. Graphs with ordered neighborhoods are a natural data representation for evolving graphs where edges are created over time, which induces an order. Combining convolutional subgraph kernels and string kernels, we design new scalable algorithms for generation of explicit graph feature maps using sketching techniques. We obtain precise bounds for the approximation accuracy and computational complexity of the proposed approaches and demonstrate their applicability on real datasets. In particular, our experiments demonstrate that neighborhood ordering results in more informative features. For the special case of general graphs, i.e. graphs without ordered neighborhoods, the new graph kernels yield efficient and simple algorithms for the comparison of label distributions between graphs.
KONG: Kernels for ordered-neighborhood graphs
Draief, Moez, Kutzkov, Konstantin, Scaman, Kevin, Vojnovic, Milan
We present novel graph kernels for graphs with node and edge labels that have ordered neighborhoods, i.e. when neighbor nodes follow an order. Graphs with ordered neighborhoods are a natural data representation for evolving graphs where edges are created over time, which induces an order. Combining convolutional subgraph kernels and string kernels, we design new scalable algorithms for generation of explicit graph feature maps using sketching techniques. We obtain precise bounds for the approximation accuracy and computational complexity of the proposed approaches and demonstrate their applicability on real datasets. In particular, our experiments demonstrate that neighborhood ordering results in more informative features. For the special case of general graphs, i.e. graphs without ordered neighborhoods, the new graph kernels yield efficient and simple algorithms for the comparison of label distributions between graphs.