Not enough data to create a plot.
Try a different view from the menu above.
Dragan, Anca
AI Alignment with Changing and Influenceable Reward Functions
Carroll, Micah, Foote, Davis, Siththaranjan, Anand, Russell, Stuart, Dragan, Anca
Existing AI alignment approaches assume that preferences are static, which is unrealistic: our preferences change, and may even be influenced by our interactions with AI systems themselves. To clarify the consequences of incorrectly assuming static preferences, we introduce Dynamic Reward Markov Decision Processes (DR-MDPs), which explicitly model preference changes and the AI's influence on them. We show that despite its convenience, the static-preference assumption may undermine the soundness of existing alignment techniques, leading them to implicitly reward AI systems for influencing user preferences in ways users may not truly want. We then explore potential solutions. First, we offer a unifying perspective on how an agent's optimization horizon may partially help reduce undesirable AI influence. Then, we formalize different notions of AI alignment that account for preference change from the outset. Comparing the strengths and limitations of 8 such notions of alignment, we find that they all either err towards causing undesirable AI influence, or are overly risk-averse, suggesting that a straightforward solution to the problems of changing preferences may not exist. As there is no avoiding grappling with changing preferences in real-world settings, this makes it all the more important to handle these issues with care, balancing risks and capabilities. We hope our work can provide conceptual clarity and constitute a first step towards AI alignment practices which explicitly account for (and contend with) the changing and influenceable nature of human preferences.
Evaluating Frontier Models for Dangerous Capabilities
Phuong, Mary, Aitchison, Matthew, Catt, Elliot, Cogan, Sarah, Kaskasoli, Alexandre, Krakovna, Victoria, Lindner, David, Rahtz, Matthew, Assael, Yannis, Hodkinson, Sarah, Howard, Heidi, Lieberum, Tom, Kumar, Ramana, Raad, Maria Abi, Webson, Albert, Ho, Lewis, Lin, Sharon, Farquhar, Sebastian, Hutter, Marcus, Deletang, Gregoire, Ruoss, Anian, El-Sayed, Seliem, Brown, Sasha, Dragan, Anca, Shah, Rohin, Dafoe, Allan, Shevlane, Toby
To understand the risks posed by a new AI system, we must understand what it can and cannot do. Building on prior work, we introduce a programme of new "dangerous capability" evaluations and pilot them on Gemini 1.0 models. Our evaluations cover four areas: (1) persuasion and deception; (2) cyber-security; (3) self-proliferation; and (4) self-reasoning. We do not find evidence of strong dangerous capabilities in the models we evaluated, but we flag early warning signs. Our goal is to help advance a rigorous science of dangerous capability evaluation, in preparation for future models.
A Generalized Acquisition Function for Preference-based Reward Learning
Ellis, Evan, Ghosal, Gaurav R., Russell, Stuart J., Dragan, Anca, Bฤฑyฤฑk, Erdem
Preference-based reward learning is a popular technique for teaching robots and autonomous systems how a human user wants them to perform a task. Previous works have shown that actively synthesizing preference queries to maximize information gain about the reward function parameters improves data efficiency. The information gain criterion focuses on precisely identifying all parameters of the reward function. This can potentially be wasteful as many parameters may result in the same reward, and many rewards may result in the same behavior in the downstream tasks. Instead, we show that it is possible to optimize for learning the reward function up to a behavioral equivalence class, such as inducing the same ranking over behaviors, distribution over choices, or other related definitions of what makes two rewards similar. We introduce a tractable framework that can capture such definitions of similarity. Our experiments in a synthetic environment, an assistive robotics environment with domain transfer, and a natural language processing problem with real datasets demonstrate the superior performance of our querying method over the state-of-the-art information gain method.
Preventing Reward Hacking with Occupancy Measure Regularization
Laidlaw, Cassidy, Singhal, Shivam, Dragan, Anca
Reward hacking occurs when an agent performs very well with respect to a "proxy" reward function (which may be hand-specified or learned), but poorly with respect to the unknown true reward. Since ensuring good alignment between the proxy and true reward is extremely difficult, one approach to prevent reward hacking is optimizing the proxy conservatively. Prior work has particularly focused on enforcing the learned policy to behave similarly to a "safe" policy by penalizing the KL divergence between their action distributions (AD). However, AD regularization doesn't always work well since a small change in action distribution at a single state can lead to potentially calamitous outcomes, while large changes might not be indicative of any dangerous activity. Our insight is that when reward hacking, the agent visits drastically different states from those reached by the safe policy, causing large deviations in state occupancy measure (OM). Thus, we propose regularizing based on the OM divergence between policies instead of AD divergence to prevent reward hacking. We theoretically establish that OM regularization can more effectively avoid large drops in true reward. Then, we empirically demonstrate in a variety of realistic environments that OM divergence is superior to AD divergence for preventing reward hacking by regularizing towards a safe policy. Furthermore, we show that occupancy measure divergence can also regularize learned policies away from reward hacking behavior. Our code and data are available at https://github.com/cassidylaidlaw/orpo
When Your AIs Deceive You: Challenges with Partial Observability of Human Evaluators in Reward Learning
Lang, Leon, Foote, Davis, Russell, Stuart, Dragan, Anca, Jenner, Erik, Emmons, Scott
Past analyses of reinforcement learning from human feedback (RLHF) assume that the human fully observes the environment. What happens when human feedback is based only on partial observations? We formally define two failure cases: deception and overjustification. Modeling the human as Boltzmann-rational w.r.t. a belief over trajectories, we prove conditions under which RLHF is guaranteed to result in policies that deceptively inflate their performance, overjustify their behavior to make an impression, or both. To help address these issues, we mathematically characterize how partial observability of the environment translates into (lack of) ambiguity in the learned return function. In some cases, accounting for partial observability makes it theoretically possible to recover the return function and thus the optimal policy, while in other cases, there is irreducible ambiguity. We caution against blindly applying RLHF in partially observable settings and propose research directions to help tackle these challenges.
Cooperative Inverse Reinforcement Learning
Hadfield-Menell, Dylan, Dragan, Anca, Abbeel, Pieter, Russell, Stuart
For an autonomous system to be helpful to humans and to pose no unwarranted risks, it needs to align its values with those of the humans in its environment in such a way that its actions contribute to the maximization of value for the humans. We propose a formal definition of the value alignment problem as cooperative inverse reinforcement learning (CIRL). A CIRL problem is a cooperative, partial-information game with two agents, human and robot; both are rewarded according to the human's reward function, but the robot does not initially know what this is. In contrast to classical IRL, where the human is assumed to act optimally in isolation, optimal CIRL solutions produce behaviors such as active teaching, active learning, and communicative actions that are more effective in achieving value alignment. We show that computing optimal joint policies in CIRL games can be reduced to solving a POMDP, prove that optimality in isolation is suboptimal in CIRL, and derive an approximate CIRL algorithm.
The Effective Horizon Explains Deep RL Performance in Stochastic Environments
Laidlaw, Cassidy, Zhu, Banghua, Russell, Stuart, Dragan, Anca
Reinforcement learning (RL) theory has largely focused on proving minimax sample complexity bounds. These require strategic exploration algorithms that use relatively limited function classes for representing the policy or value function. Our goal is to explain why deep RL algorithms often perform well in practice, despite using random exploration and much more expressive function classes like neural networks. Our work arrives at an explanation by showing that many stochastic MDPs can be solved by performing only a few steps of value iteration on the random policy's Q function and then acting greedily. When this is true, we find that it is possible to separate the exploration and learning components of RL, making it much easier to analyze. We introduce a new RL algorithm, SQIRL, that iteratively learns a near-optimal policy by exploring randomly to collect rollouts and then performing a limited number of steps of fitted-Q iteration over those rollouts. Any regression algorithm that satisfies basic in-distribution generalization properties can be used in SQIRL to efficiently solve common MDPs. This can explain why deep RL works neural networks, since it is empirically established that neural networks generalize well in-distribution. Furthermore, SQIRL explains why random exploration works well in practice, since we show many environments can be solved by estimating the random policy's Q-function and then applying zero or a few steps of value iteration. We leverage SQIRL to derive instance-dependent sample complexity bounds for RL that are exponential only in an "effective horizon" of lookahead and on the complexity of the class used for function approximation. Empirically, we also find that SQIRL performance strongly correlates with PPO and DQN performance in a variety of stochastic environments, supporting that our theoretical analysis is predictive of practical performance.
Managing AI Risks in an Era of Rapid Progress
Bengio, Yoshua, Hinton, Geoffrey, Yao, Andrew, Song, Dawn, Abbeel, Pieter, Harari, Yuval Noah, Zhang, Ya-Qin, Xue, Lan, Shalev-Shwartz, Shai, Hadfield, Gillian, Clune, Jeff, Maharaj, Tegan, Hutter, Frank, Baydin, Atฤฑlฤฑm Gรผneล, McIlraith, Sheila, Gao, Qiqi, Acharya, Ashwin, Krueger, David, Dragan, Anca, Torr, Philip, Russell, Stuart, Kahneman, Daniel, Brauner, Jan, Mindermann, Sรถren
In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose urgent priorities for AI R&D and governance.
Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations
Hong, Joey, Levine, Sergey, Dragan, Anca
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks. However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome. For example, a teacher might try to understand their student's current comprehension level to tailor their instruction accordingly, and a travel agent might ask questions of their customer to understand their preferences in order to recommend activities they might enjoy. LLMs trained with supervised fine-tuning or "single-step" RL, as with standard RLHF, might struggle which tasks that require such goal-directed behavior, since they are not trained to optimize for overall conversational outcomes after multiple turns of interaction. In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue. Our key insight is that, though LLMs might not effectively solve goal-directed dialogue tasks out of the box, they can provide useful data for solving such tasks by simulating suboptimal but human-like behaviors. Given a textual description of a goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts of hypothetical in-domain human-human interactions. Our algorithm then utilizes this dataset with offline reinforcement learning to train an interactive conversational agent that can optimize goal-directed objectives over multiple turns. In effect, the LLM produces examples of possible interactions, and RL then processes these examples to learn to perform more optimal interactions. Empirically, we show that our proposed approach achieves state-of-the-art performance in various goal-directed dialogue tasks that include teaching and preference elicitation.
Bridging RL Theory and Practice with the Effective Horizon
Laidlaw, Cassidy, Russell, Stuart, Dragan, Anca
Deep reinforcement learning (RL) works impressively in some environments and fails catastrophically in others. Ideally, RL theory should be able to provide an understanding of why this is, i.e. bounds predictive of practical performance. Unfortunately, current theory does not quite have this ability. We compare standard deep RL algorithms to prior sample complexity bounds by introducing a new dataset, BRIDGE. It consists of 155 deterministic MDPs from common deep RL benchmarks, along with their corresponding tabular representations, which enables us to exactly compute instance-dependent bounds. We choose to focus on deterministic environments because they share many interesting properties of stochastic environments, but are easier to analyze. Using BRIDGE, we find that prior bounds do not correlate well with when deep RL succeeds vs. fails, but discover a surprising property that does. When actions with the highest Q-values under the random policy also have the highest Q-values under the optimal policy (i.e. when it is optimal to be greedy on the random policy's Q function), deep RL tends to succeed; when they don't, deep RL tends to fail. We generalize this property into a new complexity measure of an MDP that we call the effective horizon, which roughly corresponds to how many steps of lookahead search would be needed in that MDP in order to identify the next optimal action, when leaf nodes are evaluated with random rollouts. Using BRIDGE, we show that the effective horizon-based bounds are more closely reflective of the empirical performance of PPO and DQN than prior sample complexity bounds across four metrics. We also find that, unlike existing bounds, the effective horizon can predict the effects of using reward shaping or a pre-trained exploration policy. Our code and data are available at https://github.com/cassidylaidlaw/effective-horizon