Dowe, David L.
Creating Powerful and Interpretable Models withRegression Networks
O'Neill, Lachlan, Angus, Simon, Borgohain, Satya, Chmait, Nader, Dowe, David L.
As the discipline has evolved, research in machine learning has been focused more and more on creating more powerful neural networks, without regard for the interpretability of these networks. Such "black-box models" yield state-of-the-art results, but we cannot understand why they make a particular decision or prediction. Sometimes this is acceptable, but often it is not. We propose a novel architecture, Regression Networks, which combines the power of neural networks with the understandability of regression analysis. While some methods for combining these exist in the literature, our architecture generalizes these approaches by taking interactions into account, offering the power of a dense neural network without forsaking interpretability. We demonstrate that the models exceed the state-of-the-art performance of interpretable models on several benchmark datasets, matching the power of a dense neural network. Finally, we discuss how these techniques can be generalized to other neural architectures, such as convolutional and recurrent neural networks.
A New AI Evaluation Cosmos: Ready to Play the Game?
Hérnandez-Orallo, José (Universitat Politècnica de València) | Baroni, Marco (Facebook) | Bieger, Jordi (Reykjavik University) | Chmait, Nader (Monash University) | Dowe, David L. (Monash University) | Hofmann, Katja (Microsoft Research) | Martínez-Plumed, Fernando (Universitat Politècnica de València) | Strannegård, Claes (Chalmers University of Technology) | Thórisson, Kristinn R. (Reykjavik Universit)
A New AI Evaluation Cosmos: Ready to Play the Game?
Hérnandez-Orallo, José (Universitat Politècnica de València) | Baroni, Marco (Facebook) | Bieger, Jordi (Reykjavik University) | Chmait, Nader (Monash University) | Dowe, David L. (Monash University) | Hofmann, Katja (Microsoft Research) | Martínez-Plumed, Fernando (Universitat Politècnica de València) | Strannegård, Claes (Chalmers University of Technology) | Thórisson, Kristinn R. (Reykjavik Universit)
We report on a series of new platforms and events dealing with AI evaluation that may change the way in which AI systems are compared and their progress is measured. The introduction of a more diverse and challenging set of tasks in these platforms can feed AI research in the years to come, shaping the notion of success and the directions of the field. However, the playground of tasks and challenges presented there may misdirect the field without some meaningful structure and systematic guidelines for its organization and use. Anticipating this issue, we also report on several initiatives and workshops that are putting the focus on analyzing the similarity and dependencies between tasks, their difficulty, what capabilities they really measure and – ultimately – on elaborating new concepts and tools that can arrange tasks and benchmarks into a meaningful taxonomy.