Goto

Collaborating Authors

 Dou, Zhicheng


Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction

arXiv.org Artificial Intelligence

Legal judgment prediction is essential for enhancing judicial efficiency. In this work, we identify that existing large language models (LLMs) underperform in this domain due to challenges in understanding case complexities and distinguishing between similar charges. To adapt LLMs for effective legal judgment prediction, we introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human judicial reasoning. ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment. We further enhance LLMs through fine-tuning with multi-task synthetic trajectories to improve legal judgment prediction accuracy and efficiency under our ADAPT framework. Extensive experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction, particularly when dealing with complex and confusing charges.


Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation

arXiv.org Artificial Intelligence

Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to unsatisfactory retrieval performance. This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs) for effective and interpretable legal case retrieval. By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes, which contain the essential information of the case. Extensive experiments on two legal case retrieval benchmarks demonstrate superior retrieval performance and robustness on complex legal case queries of KELLER over existing methods.


Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) has demonstrated effectiveness in mitigating the hallucination problem of large language models (LLMs). However, the difficulty of aligning the retriever with the diverse LLMs' knowledge preferences inevitably poses an inevitable challenge in developing a reliable RAG system. To address this issue, we propose DPA-RAG, a universal framework designed to align diverse knowledge preferences within RAG systems. Specifically, we initially introduce a preference knowledge construction pipline and incorporate five novel query augmentation strategies to alleviate preference data scarcity. Based on preference data, DPA-RAG accomplishes both external and internal preference alignment: 1) It jointly integrate pair-wise, point-wise, and contrastive preference alignment abilities into the reranker, achieving external preference alignment among RAG components. 2) It further introduces a pre-aligned stage before vanilla Supervised Fine-tuning (SFT), enabling LLMs to implicitly capture knowledge aligned with their reasoning preferences, achieving LLMs' internal alignment. Experimental results across four knowledge-intensive QA datasets demonstrate that DPA-RAG outperforms all baselines and seamlessly integrates both black-box and open-sourced LLM readers. Further qualitative analysis and discussions also provide empirical guidance for achieving reliable RAG systems. Our code is publicly available at https://github.com/dongguanting/DPA-RAG.


DemoRank: Selecting Effective Demonstrations for Large Language Models in Ranking Task

arXiv.org Artificial Intelligence

Recently, there has been increasing interest in applying large language models (LLMs) as zero-shot passage rankers. However, few studies have explored how to select appropriate in-context demonstrations for the passage ranking task, which is the focus of this paper. Previous studies mainly apply a demonstration retriever to retrieve demonstrations and use top-$k$ demonstrations for in-context learning (ICL). Although effective, this approach overlooks the dependencies between demonstrations, leading to inferior performance of few-shot ICL in the passage ranking task. In this paper, we formulate the demonstration selection as a \textit{retrieve-then-rerank} process and introduce the DemoRank framework. In this framework, we first use LLM feedback to train a demonstration retriever and construct a novel dependency-aware training samples to train a demonstration reranker to improve few-shot ICL. The construction of such training samples not only considers demonstration dependencies but also performs in an efficient way. Extensive experiments demonstrate DemoRank's effectiveness in in-domain scenarios and strong generalization to out-of-domain scenarios. Our codes are available at~\url{https://github.com/8421BCD/DemoRank}.


RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator's preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM's preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.


DomainRAG: A Chinese Benchmark for Evaluating Domain-specific Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) offers a promising solution to address various limitations of Large Language Models (LLMs), such as hallucination and difficulties in keeping up with real-time updates. This approach is particularly critical in expert and domain-specific applications where LLMs struggle to cover expert knowledge. Therefore, evaluating RAG models in such scenarios is crucial, yet current studies often rely on general knowledge sources like Wikipedia to assess the models' abilities in solving common-sense problems. In this paper, we evaluated LLMs by RAG settings in a domain-specific context, college enrollment. We identified six required abilities for RAG models, including the ability in conversational RAG, analyzing structural information, faithfulness to external knowledge, denoising, solving time-sensitive problems, and understanding multi-document interactions. Each ability has an associated dataset with shared corpora to evaluate the RAG models' performance. We evaluated popular LLMs such as Llama, Baichuan, ChatGLM, and GPT models. Experimental results indicate that existing closed-book LLMs struggle with domain-specific questions, highlighting the need for RAG models to solve expert problems. Moreover, there is room for RAG models to improve their abilities in comprehending conversational history, analyzing structural information, denoising, processing multi-document interactions, and faithfulness in expert knowledge. We expect future studies could solve these problems better.


Disentangled Hyperbolic Representation Learning for Heterogeneous Graphs

arXiv.org Artificial Intelligence

Abstract--Heterogeneous graphs have attracted a lot of research interests recently due to the success for representing complex real-world systems. However, existing methods have two pain points in embedding them into low-dimensional spaces: the mixing of structural and semantic information, and the distributional mismatch between data and embedding spaces. These two challenges require representation methods to consider the global and partial data distributions while unmixing the information. On the other hand, with the rapid development of graph neural networks, researchers begin to consider using different aggregating functions or processes I. RAPH data, which can be abstracted from a lot of real-world systems (e.g. Driven by the requirements of these However, all these methods fall into a paradigm that learns realistic scenarios and the characteristics of ease for calculation, a mixed representation for each node, ignoring the distinguishing recently graph representation learning has attracted great influences from different aspects of characteristics, attention as a general operation for graph data analysis, and e.g. Take Figure 1 as an example, the has achieved outstanding performances on diverse downstream homogeneous graph and heterogeneous graph have the same tasks, ranging from node clustering [5], [6], node classification topological structure, and keep the same structural information [7], link prediction [8] to community detection [9].


One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs) for generating more factual, accurate, and up-to-date content. Existing methods either optimize prompts to guide LLMs in leveraging retrieved information or directly fine-tune LLMs to adapt to RAG scenarios. Although fine-tuning can yield better performance, it often compromises the LLMs' general generation capabilities by modifying their parameters. This limitation poses challenges in practical applications, especially when LLMs are already deployed, as parameter adjustments may affect their original functionality. To address this, we propose a novel method that involves learning scalable and pluggable virtual tokens for RAG. By maintaining the LLMs' original parameters and fine-tuning only the embeddings of these pluggable tokens, our approach not only enhances LLMs' performance but also preserves their general generation capabilities. Furthermore, we design several training strategies to improve the scalability, flexibility, and generalizability of our method. Comprehensive experiments across nine question-answering tasks demonstrate the superiority of our approach.


Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs

arXiv.org Artificial Intelligence

The integration of large language models (LLMs) and search engines represents a significant evolution in knowledge acquisition methodologies. However, determining the knowledge that an LLM already possesses and the knowledge that requires the help of a search engine remains an unresolved issue. Most existing methods solve this problem through the results of preliminary answers or reasoning done by the LLM itself, but this incurs excessively high computational costs. This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in LLMs with a slim proxy model, to enhance the LLM's knowledge acquisition process. We employ a proxy model which has far fewer parameters, and take its answers as heuristic answers. Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM. We only conduct retrieval for the missing knowledge in questions that the LLM does not know. Extensive experimental results on five datasets with two LLMs demonstrate a notable improvement in the end-to-end performance of LLMs in question-answering tasks, achieving or surpassing current state-of-the-art models with lower LLM inference costs.


BIDER: Bridging Knowledge Inconsistency for Efficient Retrieval-Augmented LLMs via Key Supporting Evidence

arXiv.org Artificial Intelligence

Retrieval-augmented large language models (LLMs) have demonstrated efficacy in knowledge-intensive tasks such as open-domain QA, addressing inherent challenges in knowledge update and factual inadequacy. However, inconsistencies between retrieval knowledge and the necessary knowledge for LLMs, leading to a decline in LLM's answer quality. This paper introduces BIDER, an approach that refines retrieval documents into Key Supporting Evidence (KSE) through knowledge synthesis, supervised fine-tuning (SFT), and preference alignment. We train BIDER by learning from crafting KSE, while maximizing its output to align with LLM's information acquisition preferences through reinforcement learning. Evaluations across five datasets show BIDER boosts LLMs' answer quality by 7% while reducing input content length in retrieval documents by 80%, outperforming existing methods. The proposed KSE simulation effectively equips LLMs with essential information for accurate question answering.