Not enough data to create a plot.
Try a different view from the menu above.
Dou, Zhicheng
Compressing Lengthy Context With UltraGist
Zhang, Peitian, Liu, Zheng, Xiao, Shitao, Shao, Ninglu, Ye, Qiwei, Dou, Zhicheng
Compressing lengthy context is a critical but technically challenging problem. In this paper, we propose a new method called UltraGist, which is distinguished for its high-quality compression of lengthy context due to the innovative design of the compression and learning algorithm. UltraGist brings forth the following important benefits. Firstly, it notably contributes to the flexibility of compression, as it can be effectively learned to support a broad range of context lengths and compression ratios. Secondly, it helps to produce fine-grained compression for the lengthy context, where each small segment of the context is progressively processed on top of a tailored cross-attention mechanism. Thirdly, it makes the training process sample-efficient and thus maximizes the use of training data. Finally, it facilitates the efficient running of compression for dynamic context, as the compression result can be progressively generated and hence incrementally updated. UltraGist is evaluated on a wide variety of tasks associated with lengthy context, such as document QA and summarization, few-shot learning, multi-session conversation, et al. Whilst the existing methods fail to handle these challenging scenarios, our approach is able to preserve a near-lossless compression performance throughout all the evaluations.
Are Long-LLMs A Necessity For Long-Context Tasks?
Qian, Hongjin, Liu, Zheng, Zhang, Peitian, Mao, Kelong, Zhou, Yujia, Chen, Xu, Dou, Zhicheng
The learning and deployment of long-LLMs remains a challenging problem despite recent progresses. In this work, we argue that the long-LLMs are not a necessity to solve long-context tasks, as common long-context tasks are short-context solvable, i.e. they can be solved by purely working with oracle short-contexts within the long-context tasks' inputs. On top of this argument, we propose a framework called LC-Boost (Long-Context Bootstrapper), which enables a short-LLM to address the long-context tasks in a bootstrapping manner. In our framework, the short-LLM prompts itself to reason for two critical decisions: 1) how to access to the appropriate part of context within the input, 2) how to make effective use of the accessed context. By adaptively accessing and utilizing the context based on the presented tasks, LC-Boost can serve as a general framework to handle diversified long-context processing problems. We comprehensively evaluate different types of tasks from popular long-context benchmarks, where LC-Boost is able to achieve a substantially improved performance with a much smaller consumption of resource.
FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research
Jin, Jiajie, Zhu, Yutao, Yang, Xinyu, Zhang, Chenghao, Dou, Zhicheng
With the advent of Large Language Models (LLMs), the potential of Retrieval Augmented Generation (RAG) techniques have garnered considerable research attention. Numerous novel algorithms and models have been introduced to enhance various aspects of RAG systems. However, the absence of a standardized framework for implementation, coupled with the inherently intricate RAG process, makes it challenging and time-consuming for researchers to compare and evaluate these approaches in a consistent environment. Existing RAG toolkits like LangChain and LlamaIndex, while available, are often heavy and unwieldy, failing to meet the personalized needs of researchers. In response to this challenge, we propose FlashRAG, an efficient and modular open-source toolkit designed to assist researchers in reproducing existing RAG methods and in developing their own RAG algorithms within a unified framework. Our toolkit implements 12 advanced RAG methods and has gathered and organized 32 benchmark datasets. Our toolkit has various features, including customizable modular framework, rich collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-processing scripts, and extensive and standard evaluation metrics. Our toolkit and resources are available at https://github.com/RUC-NLPIR/FlashRAG.
From Matching to Generation: A Survey on Generative Information Retrieval
Li, Xiaoxi, Jin, Jiajie, Zhou, Yujia, Zhang, Yuyao, Zhang, Peitian, Zhu, Yutao, Dou, Zhicheng
Information Retrieval (IR) systems are crucial tools for users to access information, widely applied in scenarios like search engines, question answering, and recommendation systems. Traditional IR methods, based on similarity matching to return ranked lists of documents, have been reliable means of information acquisition, dominating the IR field for years. With the advancement of pre-trained language models, generative information retrieval (GenIR) has emerged as a novel paradigm, gaining increasing attention in recent years. Currently, research in GenIR can be categorized into two aspects: generative document retrieval (GR) and reliable response generation. GR leverages the generative model's parameters for memorizing documents, enabling retrieval by directly generating relevant document identifiers without explicit indexing. Reliable response generation, on the other hand, employs language models to directly generate the information users seek, breaking the limitations of traditional IR in terms of document granularity and relevance matching, offering more flexibility, efficiency, and creativity, thus better meeting practical needs. This paper aims to systematically review the latest research progress in GenIR. We will summarize the advancements in GR regarding model training, document identifier, incremental learning, downstream tasks adaptation, multi-modal GR and generative recommendation, as well as progress in reliable response generation in aspects of internal knowledge memorization, external knowledge augmentation, generating response with citations and personal information assistant. We also review the evaluation, challenges and future prospects in GenIR systems. This review aims to offer a comprehensive reference for researchers in the GenIR field, encouraging further development in this area.
Extending Llama-3's Context Ten-Fold Overnight
Zhang, Peitian, Shao, Ninglu, Liu, Zheng, Xiao, Shitao, Qian, Hongjin, Ye, Qiwei, Dou, Zhicheng
We extend the context length of Llama-3-8B-Instruct from 8K to 80K via QLoRA fine-tuning. The entire training cycle is super efficient, which takes 8 hours on one 8xA800 (80G) GPU machine. The resulted model exhibits superior performances across a broad range of evaluation tasks, such as NIHS, topic retrieval, and long-context language understanding; meanwhile, it also well preserves the original capability over short contexts. The dramatic context extension is mainly attributed to merely 3.5K synthetic training samples generated by GPT-4 , which indicates the LLMs' inherent (yet largely underestimated) potential to extend its original context length. In fact, the context length could be extended far beyond 80K with more computation resources. Therefore, the team will publicly release the entire resources (including data, model, data generation pipeline, training code) so as to facilitate the future research from the community: \url{https://github.com/FlagOpen/FlagEmbedding}.
ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval
Mao, Kelong, Deng, Chenlong, Chen, Haonan, Mo, Fengran, Liu, Zheng, Sakai, Tetsuya, Dou, Zhicheng
Conversational search requires accurate interpretation of user intent from complex multi-turn contexts. This paper presents ChatRetriever, which inherits the strong generalization capability of large language models to robustly represent complex conversational sessions for dense retrieval. To achieve this, we propose a simple and effective dual-learning approach that adapts LLM for retrieval via contrastive learning while enhancing the complex session understanding through masked instruction tuning on high-quality conversational instruction tuning data. Extensive experiments on five conversational search benchmarks demonstrate that ChatRetriever substantially outperforms existing conversational dense retrievers, achieving state-of-the-art performance on par with LLM-based rewriting approaches. Furthermore, ChatRetriever exhibits superior robustness in handling diverse conversational contexts. Our work highlights the potential of adapting LLMs for retrieval with complex inputs like conversational search sessions and proposes an effective approach to advance this research direction.
UFO: a Unified and Flexible Framework for Evaluating Factuality of Large Language Models
Huang, Zhaoheng, Dou, Zhicheng, Zhu, Yutao, Wen, Ji-rong
Large language models (LLMs) may generate text that lacks consistency with human knowledge, leading to factual inaccuracies or \textit{hallucination}. Existing research for evaluating the factuality of LLMs involves extracting fact claims using an LLM and verifying them against a predefined fact source. However, these evaluation metrics are task-specific, and not scalable, and the substitutability of fact sources in different tasks is under-explored. To address these challenges, we categorize four available fact sources: human-written evidence, reference documents, search engine results, and LLM knowledge, along with five text generation tasks containing six representative datasets. Then, we propose \texttt{UFO}, an LLM-based unified and flexible evaluation framework to verify facts against plug-and-play fact sources. We implement five evaluation scenarios based on this framework. Experimental results show that for most QA tasks, human-written evidence and reference documents are crucial, and they can substitute for each other in retrieval-augmented QA tasks. In news fact generation tasks, search engine results and LLM knowledge are essential. Our dataset and code are available at \url{https://github.com/WaldenRUC/UFO}.
Grounding Language Model with Chunking-Free In-Context Retrieval
Qian, Hongjin, Liu, Zheng, Mao, Kelong, Zhou, Yujia, Dou, Zhicheng
This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval. CFIC addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained. Our evaluations of CFIC on a range of open QA datasets demonstrate its superiority in retrieving relevant and accurate evidence, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.
Enhancing Multi-field B2B Cloud Solution Matching via Contrastive Pre-training
Chen, Haonan, Dou, Zhicheng, Hao, Xuetong, Tao, Yunhao, Song, Shiren, Sheng, Zhenli
Cloud solutions have gained significant popularity in the technology While there have been some studies focusing on designing effective industry as they offer a combination of services and tools to matching systems [1, 18, 20, 23, 29, 32, 35], none of these tackle specific problems. However, despite their widespread use, the works have explored the matching of cloud solutions and their customers, task of identifying appropriate company customers for a specific which holds significant business value. In Huawei Cloud, target solution to the sales team of a solution provider remains a the scenario is manual-driven, wherein our model identifies a list complex business problem that existing matching systems have of the top matching companies to the sales team associated with yet to adequately address. In this work, we study the B2B solution a specific solution. The sales team then manually reviews this list matching problem and identify two main challenges of this scenario: and proceeds with promoting the solution to those companies. This (1) the modeling of complex multi-field features and (2) the limited, specific scenario can be considered a matching problem, with the incomplete, and sparse transaction data. To tackle these challenges, primary goal being the identification of appropriate companies we propose a framework CAMA, which is built with a hierarchical (customers) for the sales teams to target in their promotion efforts.
Generalizing Conversational Dense Retrieval via LLM-Cognition Data Augmentation
Chen, Haonan, Dou, Zhicheng, Mao, Kelong, Liu, Jiongnan, Zhao, Ziliang
Conversational search utilizes muli-turn natural language contexts to retrieve relevant passages. Existing conversational dense retrieval models mostly view a conversation as a fixed sequence of questions and responses, overlooking the severe data sparsity problem -- that is, users can perform a conversation in various ways, and these alternate conversations are unrecorded. Consequently, they often struggle to generalize to diverse conversations in real-world scenarios. In this work, we propose a framework for generalizing Conversational dense retrieval via LLM-cognition data Augmentation (ConvAug). ConvAug first generates multi-level augmented conversations to capture the diverse nature of conversational contexts. Inspired by human cognition, we devise a cognition-aware process to mitigate the generation of false positives, false negatives, and hallucinations. Moreover, we develop a difficulty-adaptive sample filter that selects challenging samples for complex conversations, thereby giving the model a larger learning space. A contrastive learning objective is then employed to train a better conversational context encoder. Extensive experiments conducted on four public datasets, under both normal and zero-shot settings, demonstrate the effectiveness, generalizability, and applicability of ConvAug.