Doster, Tim
ICML 2023 Topological Deep Learning Challenge : Design and Results
Papillon, Mathilde, Hajij, Mustafa, Jenne, Helen, Mathe, Johan, Myers, Audun, Papamarkou, Theodore, Birdal, Tolga, Dey, Tamal, Doster, Tim, Emerson, Tegan, Gopalakrishnan, Gurusankar, Govil, Devendra, Guzmán-Sáenz, Aldo, Kvinge, Henry, Livesay, Neal, Mukherjee, Soham, Samaga, Shreyas N., Ramamurthy, Karthikeyan Natesan, Karri, Maneel Reddy, Rosen, Paul, Sanborn, Sophia, Walters, Robin, Agerberg, Jens, Barikbin, Sadrodin, Battiloro, Claudio, Bazhenov, Gleb, Bernardez, Guillermo, Brent, Aiden, Escalera, Sergio, Fiorellino, Simone, Gavrilev, Dmitrii, Hassanin, Mohammed, Häusner, Paul, Gardaa, Odin Hoff, Khamis, Abdelwahed, Lecha, Manuel, Magai, German, Malygina, Tatiana, Ballester, Rubén, Nadimpalli, Kalyan, Nikitin, Alexander, Rabinowitz, Abraham, Salatiello, Alessandro, Scardapane, Simone, Scofano, Luca, Singh, Suraj, Sjölund, Jens, Snopov, Pavel, Spinelli, Indro, Telyatnikov, Lev, Testa, Lucia, Yang, Maosheng, Yue, Yixiao, Zaghen, Olga, Zia, Ali, Miolane, Nina
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.
How many dimensions are required to find an adversarial example?
Godfrey, Charles, Kvinge, Henry, Bishoff, Elise, Mckay, Myles, Brown, Davis, Doster, Tim, Byler, Eleanor
Past work exploring adversarial vulnerability have focused on situations where an adversary can perturb all dimensions of model input. On the other hand, a range of recent works consider the case where either (i) an adversary can perturb a limited number of input parameters or (ii) a subset of modalities in a multimodal problem. In both of these cases, adversarial examples are effectively constrained to a subspace $V$ in the ambient input space $\mathcal{X}$. Motivated by this, in this work we investigate how adversarial vulnerability depends on $\dim(V)$. In particular, we show that the adversarial success of standard PGD attacks with $\ell^p$ norm constraints behaves like a monotonically increasing function of $\epsilon (\frac{\dim(V)}{\dim \mathcal{X}})^{\frac{1}{q}}$ where $\epsilon$ is the perturbation budget and $\frac{1}{p} + \frac{1}{q} =1$, provided $p > 1$ (the case $p=1$ presents additional subtleties which we analyze in some detail). This functional form can be easily derived from a simple toy linear model, and as such our results land further credence to arguments that adversarial examples are endemic to locally linear models on high dimensional spaces.