Dori-Hacohen, Shiri
Quantifying Misalignment Between Agents
Kierans, Aidan, Ghosh, Avijit, Hazan, Hananel, Dori-Hacohen, Shiri
Growing concerns about the AI alignment problem have emerged in recent years, with previous work focusing mainly on (1) qualitative descriptions of the alignment problem; (2) attempting to align AI actions with human interests by focusing on value specification and learning; and/or (3) focusing on a single agent or on humanity as a singular unit. Recent work in sociotechnical AI alignment has made some progress in defining alignment inclusively, but the field as a whole still lacks a systematic understanding of how to specify, describe, and analyze misalignment among entities, which may include individual humans, AI agents, and complex compositional entities such as corporations, nation-states, and so forth. Previous work on controversy in computational social science offers a mathematical model of contention among populations (of humans). In this paper, we adapt this contention model to the alignment problem, and show how misalignment can vary depending on the population of agents (human or otherwise) being observed, the domain in question, and the agents' probability-weighted preferences between possible outcomes. Our model departs from value specification approaches and focuses instead on the morass of complex, interlocking, sometimes contradictory goals that agents may have in practice. We apply our model by analyzing several case studies ranging from social media moderation to autonomous vehicle behavior. By applying our model with appropriately representative value data, AI engineers can ensure that their systems learn values maximally aligned with diverse human interests.
Reducing Biases towards Minoritized Populations in Medical Curricular Content via Artificial Intelligence for Fairer Health Outcomes
Salavati, Chiman, Song, Shannon, Diaz, Willmar Sosa, Hale, Scott A., Montenegro, Roberto E., Murai, Fabricio, Dori-Hacohen, Shiri
Biased information (recently termed bisinformation) continues to be taught in medical curricula, often long after having been debunked. In this paper, we introduce BRICC, a firstin-class initiative that seeks to mitigate medical bisinformation using machine learning to systematically identify and flag text with potential biases, for subsequent review in an expert-in-the-loop fashion, thus greatly accelerating an otherwise labor-intensive process. A gold-standard BRICC dataset was developed throughout several years, and contains over 12K pages of instructional materials. Medical experts meticulously annotated these documents for bias according to comprehensive coding guidelines, emphasizing gender, sex, age, geography, ethnicity, and race. Using this labeled dataset, we trained, validated, and tested medical bias classifiers. We test three classifier approaches: a binary type-specific classifier, a general bias classifier; an ensemble combining bias type-specific classifiers independently-trained; and a multitask learning (MTL) model tasked with predicting both general and type-specific biases. While MTL led to some improvement on race bias detection in terms of F1-score, it did not outperform binary classifiers trained specifically on each task. On general bias detection, the binary classifier achieves up to 0.923 of AUC, a 27.8% improvement over the baseline. This work lays the foundations for debiasing medical curricula by exploring a novel dataset and evaluating different training model strategies. Hence, it offers new pathways for more nuanced and effective mitigation of bisinformation.
SynDy: Synthetic Dynamic Dataset Generation Framework for Misinformation Tasks
Shliselberg, Michael, Kazemi, Ashkan, Hale, Scott A., Dori-Hacohen, Shiri
Diaspora communities are disproportionately impacted by off-the-radar misinformation and often neglected by mainstream fact-checking efforts, creating a critical need to scale-up efforts of nascent fact-checking initiatives. In this paper we present SynDy, a framework for Synthetic Dynamic Dataset Generation to leverage the capabilities of the largest frontier Large Language Models (LLMs) to train local, specialized language models. To the best of our knowledge, SynDy is the first paper utilizing LLMs to create fine-grained synthetic labels for tasks of direct relevance to misinformation mitigation, namely Claim Matching, Topical Clustering, and Claim Relationship Classification. SynDy utilizes LLMs and social media queries to automatically generate distantly-supervised, topically-focused datasets with synthetic labels on these three tasks, providing essential tools to scale up human-led fact-checking at a fraction of the cost of human-annotated data. Training on SynDy's generated labels shows improvement over a standard baseline and is not significantly worse compared to training on human labels (which may be infeasible to acquire). SynDy is being integrated into Meedan's chatbot tiplines that are used by over 50 organizations, serve over 230K users annually, and automatically distribute human-written fact-checks via messaging apps such as WhatsApp. SynDy will also be integrated into our deployed Co-Insights toolkit, enabling low-resource organizations to launch tiplines for their communities. Finally, we envision SynDy enabling additional fact-checking tools such as matching new misinformation claims to high-quality explainers on common misinformation topics.
Fairness via AI: Bias Reduction in Medical Information
Dori-Hacohen, Shiri, Montenegro, Roberto, Murai, Fabricio, Hale, Scott A., Sung, Keen, Blain, Michela, Edwards-Johnson, Jennifer
Most Fairness in AI research focuses on exposing biases in AI systems. A broader lens on fairness reveals that AI can serve a greater aspiration: rooting out societal inequities from their source. Specifically, we focus on inequities in health information, and aim to reduce bias in that domain using AI. The AI algorithms under the hood of search engines and social media, many of which are based on recommender systems, have an outsized impact on the quality of medical and health information online. Therefore, embedding bias detection and reduction into these recommender systems serving up medical and health content online could have an outsized positive impact on patient outcomes and wellbeing. In this position paper, we offer the following contributions: (1) we propose a novel framework of Fairness via AI, inspired by insights from medical education, sociology and antiracism; (2) we define a new term, bisinformation, which is related to, but distinct from, misinformation, and encourage researchers to study it; (3) we propose using AI to study, detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society; and (4) we suggest several pillars and pose several open problems in order to seed inquiry in this new space. While part (3) of this work specifically focuses on the health domain, the fundamental computer science advances and contributions stemming from research efforts in bias reduction and Fairness via AI have broad implications in all areas of society.