Goto

Collaborating Authors

 Donnelly, Rob


GPT-4o System Card

arXiv.org Artificial Intelligence

GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.


Counterfactual Inference for Consumer Choice Across Many Product Categories

arXiv.org Machine Learning

This paper proposes a method for estimating consumer preferences among discrete choices, where the consumer chooses at most one product in a category, but selects from multiple categories in parallel. The consumer's utility is additive in the different categories. Her preferences about product attributes as well as her price sensitivity vary across products and are in general correlated across products. We build on techniques from the machine learning literature on probabilistic models of matrix factorization, extending the methods to account for time-varying product attributes and products going out of stock. We evaluate the performance of the model using held-out data from weeks with price changes or out of stock products. We show that our model improves over traditional modeling approaches that consider each category in isolation. One source of the improvement is the ability of the model to accurately estimate heterogeneity in preferences (by pooling information across categories); another source of improvement is its ability to estimate the preferences of consumers who have rarely or never made a purchase in a given category in the training data. Using held-out data, we show that our model can accurately distinguish which consumers are most price sensitive to a given product. We consider counterfactuals such as personally targeted price discounts, showing that using a richer model such as the one we propose substantially increases the benefits of personalization in discounts.