Goto

Collaborating Authors

 Dong, Zhaoyang


EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection

arXiv.org Artificial Intelligence

Accurate prediction helps to achieve supply-demand balance in energy systems, supporting decision-making and scheduling. Traditional models, lacking AI-assisted automation, rely on experts, incur high costs, and struggle with sparse data prediction. To address these challenges, we propose the Energy Forecasting Large Language Model (EF-LLM), which integrates domain knowledge and temporal data for time-series forecasting, supporting both pre-forecast operations and post-forecast decision-support. EF-LLM's human-AI interaction capabilities lower the entry barrier in forecasting tasks, reducing the need for extra expert involvement. To achieve this, we propose a continual learning approach with updatable LoRA and a multi-channel architecture for aligning heterogeneous multimodal data, enabling EF-LLM to continually learn heterogeneous multimodal knowledge. In addition, EF-LLM enables accurate predictions under sparse data conditions through its ability to process multimodal data. We propose Fusion Parameter-Efficient Fine-Tuning (F-PEFT) method to effectively leverage both time-series data and text for this purpose. EF-LLM is also the first energy-specific LLM to detect hallucinations and quantify their occurrence rate, achieved via multi-task learning, semantic similarity analysis, and ANOVA. We have achieved success in energy prediction scenarios for load, photovoltaic, and wind power forecast.


Federated Graph Learning for EV Charging Demand Forecasting with Personalization Against Cyberattacks

arXiv.org Machine Learning

Mitigating cybersecurity risk in electric vehicle (EV) charging demand forecasting plays a crucial role in the safe operation of collective EV chargings, the stability of the power grid, and the cost-effective infrastructure expansion. However, existing methods either suffer from the data privacy issue and the susceptibility to cyberattacks or fail to consider the spatial correlation among different stations. To address these challenges, a federated graph learning approach involving multiple charging stations is proposed to collaboratively train a more generalized deep learning model for demand forecasting while capturing spatial correlations among various stations and enhancing robustness against potential attacks. Firstly, for better model performance, a Graph Neural Network (GNN) model is leveraged to characterize the geographic correlation among different charging stations in a federated manner. Secondly, to ensure robustness and deal with the data heterogeneity in a federated setting, a message passing that utilizes a global attention mechanism to aggregate personalized models for each client is proposed. Thirdly, by concerning cyberattacks, a special credit-based function is designed to mitigate potential threats from malicious clients or unwanted attacks. Extensive experiments on a public EV charging dataset are conducted using various deep learning techniques and federated learning methods to demonstrate the prediction accuracy and robustness of the proposed approach.


Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous Energy Storage Systems

arXiv.org Artificial Intelligence

Energy storage systems (ESS) are pivotal component in the energy market, serving as both energy suppliers and consumers. ESS operators can reap benefits from energy arbitrage by optimizing operations of storage equipment. To further enhance ESS flexibility within the energy market and improve renewable energy utilization, a heterogeneous photovoltaic-ESS (PV-ESS) is proposed, which leverages the unique characteristics of battery energy storage (BES) and hydrogen energy storage (HES). For scheduling tasks of the heterogeneous PV-ESS, cost description plays a crucial role in guiding operator's strategies to maximize benefits. We develop a comprehensive cost function that takes into account degradation, capital, and operation/maintenance costs to reflect real-world scenarios. Moreover, while numerous methods excel in optimizing ESS energy arbitrage, they often rely on black-box models with opaque decision-making processes, limiting practical applicability. To overcome this limitation and enable transparent scheduling strategies, a prototype-based policy network with inherent interpretability is introduced. This network employs human-designed prototypes to guide decision-making by comparing similarities between prototypical situations and encountered situations, which allows for naturally explained scheduling strategies. Comparative results across four distinct cases underscore the effectiveness and practicality of our proposed pre-hoc interpretable optimization method when contrasted with black-box models.