Goto

Collaborating Authors

 Dong, Wei


MDTeamGPT: A Self-Evolving LLM-based Multi-Agent Framework for Multi-Disciplinary Team Medical Consultation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have made significant progress in various fields. However, challenges remain in Multi-Disciplinary Team (MDT) medical consultations. Current research enhances reasoning through role assignment, task decomposition, and accumulation of medical experience. Multi-role collaboration in MDT consultations often results in excessively long dialogue histories. This increases the model's cognitive burden and degrades both efficiency and accuracy. Some methods only store treatment histories. They do not extract effective experience or reflect on errors. This limits knowledge generalization and system evolution. We propose a multi-agent MDT medical consultation framework based on LLMs to address these issues. Our framework uses consensus aggregation and a residual discussion structure for multi-round consultations. It also employs a Correct Answer Knowledge Base (CorrectKB) and a Chain-of-Thought Knowledge Base (ChainKB) to accumulate consultation experience. These mechanisms enable the framework to evolve and continually improve diagnosis rationality and accuracy. Experimental results on the MedQA and PubMedQA datasets demonstrate that our framework achieves accuracies of 90.1% and 83.9%, respectively, and that the constructed knowledge bases generalize effectively across test sets from both datasets.


Predictor-Based Time Delay Control of A Hex-Jet Unmanned Aerial Vehicle

arXiv.org Artificial Intelligence

Turbojet-powered VTOL UAVs have garnered increased attention in heavy-load transport and emergency services, due to their superior power density and thrust-to-weight ratio compared to existing electronic propulsion systems. The main challenge with jet-powered UAVs lies in the complexity of thrust vectoring mechanical systems, which aim to mitigate the slow dynamics of the turbojet. In this letter, we introduce a novel turbojet-powered UAV platform named Hex-Jet. Our concept integrates thrust vectoring and differential thrust for comprehensive attitude control. This approach notably simplifies the thrust vectoring mechanism. We utilize a predictor-based time delay control method based on the frequency domain model in our Hex-Jet controller design to mitigate the delay in roll attitude control caused by turbojet dynamics. Our comparative studies provide valuable insights for the UAV community, and flight tests on the scaled prototype demonstrate the successful implementation and verification of the proposed predictor-based time delay control technique.


Constrained Gaussian Wasserstein Optimal Transport with Commutative Covariance Matrices

arXiv.org Artificial Intelligence

Optimal transport has found widespread applications in signal processing and machine learning. Among its many equivalent formulations, optimal transport seeks to reconstruct a random variable/vector with a prescribed distribution at the destination while minimizing the expected distortion relative to a given random variable/vector at the source. However, in practice, certain constraints may render the optimal transport plan infeasible. In this work, we consider three types of constraints: rate constraints, dimension constraints, and channel constraints, motivated by perception-aware lossy compression, generative principal component analysis, and deep joint source-channel coding, respectively. Special attenion is given to the setting termed Gaussian Wasserstein optimal transport, where both the source and reconstruction variables are multivariate Gaussian, and the end-to-end distortion is measured by the mean squared error. We derive explicit results for the minimum achievable mean squared error under the three aforementioned constraints when the covariance matrices of the source and reconstruction variables commute.


Split Adaptation for Pre-trained Vision Transformers

arXiv.org Artificial Intelligence

Vision Transformers (ViTs), extensively pre-trained on large-scale datasets, have become essential to foundation models, allowing excellent performance on diverse downstream tasks with minimal adaptation. Consequently, there is growing interest in adapting pre-trained ViTs across various fields, including privacy-sensitive domains where clients are often reluctant to share their data. Existing adaptation methods typically require direct data access, rendering them infeasible under these constraints. A straightforward solution may be sending the pre-trained ViT to clients for local adaptation, which poses issues of model intellectual property protection and incurs heavy client computation overhead. To address these issues, we propose a novel split adaptation (SA) method that enables effective downstream adaptation while protecting data and models. SA, inspired by split learning (SL), segments the pre-trained ViT into a frontend and a backend, with only the frontend shared with the client for data representation extraction. But unlike regular SL, SA replaces frontend parameters with low-bit quantized values, preventing direct exposure of the model. SA allows the client to add bi-level noise to the frontend and the extracted data representations, ensuring data protection. Accordingly, SA incorporates data-level and model-level out-of-distribution enhancements to mitigate noise injection's impact on adaptation performance. Our SA focuses on the challenging few-shot adaptation and adopts patch retrieval augmentation for overfitting alleviation. Extensive experiments on multiple datasets validate SA's superiority over state-of-the-art methods and demonstrate its defense against advanced data reconstruction attacks while preventing model leakage with minimal computation cost on the client side. The source codes can be found at https://github.com/conditionWang/Split_Adaptation.


HVI: A New Color Space for Low-light Image Enhancement

arXiv.org Artificial Intelligence

Low-Light Image Enhancement (LLIE) is a crucial computer vision task that aims to restore detailed visual information from corrupted low-light images. Many existing LLIE methods are based on standard RGB (sRGB) space, which often produce color bias and brightness artifacts due to inherent high color sensitivity in sRGB. While converting the images using Hue, Saturation and Value (HSV) color space helps resolve the brightness issue, it introduces significant red and black noise artifacts. To address this issue, we propose a new color space for LLIE, namely Horizontal/Vertical-Intensity (HVI), defined by polarized HS maps and learnable intensity. The former enforces small distances for red coordinates to remove the red artifacts, while the latter compresses the low-light regions to remove the black artifacts. To fully leverage the chromatic and intensity information, a novel Color and Intensity Decoupling Network (CIDNet) is further introduced to learn accurate photometric mapping function under different lighting conditions in the HVI space. Comprehensive results from benchmark and ablation experiments show that the proposed HVI color space with CIDNet outperforms the state-of-the-art methods on 10 datasets. The code is available at https://github.com/Fediory/HVI-CIDNet.


Towards Label-Only Membership Inference Attack against Pre-trained Large Language Models

arXiv.org Artificial Intelligence

Membership Inference Attacks (MIAs) aim to predict whether a data sample belongs to the model's training set or not. Although prior research has extensively explored MIAs in Large Language Models (LLMs), they typically require accessing to complete output logits (\ie, \textit{logits-based attacks}), which are usually not available in practice. In this paper, we study the vulnerability of pre-trained LLMs to MIAs in the \textit{label-only setting}, where the adversary can only access generated tokens (text). We first reveal that existing label-only MIAs have minor effects in attacking pre-trained LLMs, although they are highly effective in inferring fine-tuning datasets used for personalized LLMs. We find that their failure stems from two main reasons, including better generalization and overly coarse perturbation. Specifically, due to the extensive pre-training corpora and exposing each sample only a few times, LLMs exhibit minimal robustness differences between members and non-members. This makes token-level perturbations too coarse to capture such differences. To alleviate these problems, we propose \textbf{PETAL}: a label-only membership inference attack based on \textbf{PE}r-\textbf{T}oken sem\textbf{A}ntic simi\textbf{L}arity. Specifically, PETAL leverages token-level semantic similarity to approximate output probabilities and subsequently calculate the perplexity. It finally exposes membership based on the common assumption that members are `better' memorized and have smaller perplexity. We conduct extensive experiments on the WikiMIA benchmark and the more challenging MIMIR benchmark. Empirically, our PETAL performs better than the extensions of existing label-only attacks against personalized LLMs and even on par with other advanced logit-based attacks across all metrics on five prevalent open-source LLMs.


The Ann Arbor Architecture for Agent-Oriented Programming

arXiv.org Artificial Intelligence

In this paper, we reexamine prompt engineering for large language models through the lens of automata theory. We argue that language models function as automata and, like all automata, should be programmed in the languages they accept, a unified collection of all natural and formal languages. Therefore, traditional software engineering practices--conditioned on the clear separation of programming languages and natural languages--must be rethought. We introduce the Ann Arbor Architecture, a conceptual framework for agent-oriented programming of language models, as a higher-level abstraction over raw token generation, and provide a new perspective on in-context learning. Based on this framework, we present the design of our agent platform Postline, and report on our initial experiments in agent training.


PromptGuard: Soft Prompt-Guided Unsafe Content Moderation for Text-to-Image Models

arXiv.org Artificial Intelligence

Text-to-image (T2I) models have been shown to be vulnerable to misuse, particularly in generating not-safe-for-work (NSFW) content, raising serious ethical concerns. In this work, we present PromptGuard, a novel content moderation technique that draws inspiration from the system prompt mechanism in large language models (LLMs) for safety alignment. Unlike LLMs, T2I models lack a direct interface for enforcing behavioral guidelines. Our key idea is to optimize a safety soft prompt that functions as an implicit system prompt within the T2I model's textual embedding space. This universal soft prompt (P*) directly moderates NSFW inputs, enabling safe yet realistic image generation without altering the inference efficiency or requiring proxy models. Extensive experiments across three datasets demonstrate that PromptGuard effectively mitigates NSFW content generation while preserving high-quality benign outputs. PromptGuard achieves 7.8 times faster than prior content moderation methods, surpassing eight state-of-the-art defenses with an optimal unsafe ratio down to 5.84%.


A Survey on Large Language Model Acceleration based on KV Cache Management

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have revolutionized a wide range of domains such as natural language processing, computer vision, and multi-modal tasks due to their ability to comprehend context and perform logical reasoning. However, the computational and memory demands of LLMs, particularly during inference, pose significant challenges when scaling them to real-world, long-context, and real-time applications. Key-Value (KV) cache management has emerged as a critical optimization technique for accelerating LLM inference by reducing redundant computations and improving memory utilization. This survey provides a comprehensive overview of KV cache management strategies for LLM acceleration, categorizing them into token-level, model-level, and system-level optimizations. Token-level strategies include KV cache selection, budget allocation, merging, quantization, and low-rank decomposition, while model-level optimizations focus on architectural innovations and attention mechanisms to enhance KV reuse. System-level approaches address memory management, scheduling, and hardware-aware designs to improve efficiency across diverse computing environments. Additionally, the survey provides an overview of both text and multimodal datasets and benchmarks used to evaluate these strategies. By presenting detailed taxonomies and comparative analyses, this work aims to offer useful insights for researchers and practitioners to support the development of efficient and scalable KV cache management techniques, contributing to the practical deployment of LLMs in real-world applications. The curated paper list for KV cache management is in: \href{https://github.com/TreeAI-Lab/Awesome-KV-Cache-Management}{https://github.com/TreeAI-Lab/Awesome-KV-Cache-Management}.


CORAG: A Cost-Constrained Retrieval Optimization System for Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated remarkable generation capabilities but often struggle to access up-to-date information, which can lead to hallucinations. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating knowledge from external databases, enabling more accurate and relevant responses. Due to the context window constraints of LLMs, it is impractical to input the entire external database context directly into the model. Instead, only the most relevant information, referred to as chunks, is selectively retrieved. However, current RAG research faces three key challenges. First, existing solutions often select each chunk independently, overlooking potential correlations among them. Second, in practice the utility of chunks is non-monotonic, meaning that adding more chunks can decrease overall utility. Traditional methods emphasize maximizing the number of included chunks, which can inadvertently compromise performance. Third, each type of user query possesses unique characteristics that require tailored handling, an aspect that current approaches do not fully consider. To overcome these challenges, we propose a cost constrained retrieval optimization system CORAG for retrieval-augmented generation. We employ a Monte Carlo Tree Search (MCTS) based policy framework to find optimal chunk combinations sequentially, allowing for a comprehensive consideration of correlations among chunks. Additionally, rather than viewing budget exhaustion as a termination condition, we integrate budget constraints into the optimization of chunk combinations, effectively addressing the non-monotonicity of chunk utility.