Goto

Collaborating Authors

 Dong, Chang


TrojanTime: Backdoor Attacks on Time Series Classification

arXiv.org Artificial Intelligence

Time Series Classification (TSC) is highly vulnerable to backdoor attacks, posing significant security threats. Existing methods primarily focus on data poisoning during the training phase, designing sophisticated triggers to improve stealthiness and attack success rate (ASR). However, in practical scenarios, attackers often face restrictions in accessing training data. Moreover, it is a challenge for the model to maintain generalization ability on clean test data while remaining vulnerable to poisoned inputs when data is inaccessible. To address these challenges, we propose TrojanTime, a novel two-step training algorithm. In the first stage, we generate a pseudo-dataset using an external arbitrary dataset through target adversarial attacks. The clean model is then continually trained on this pseudo-dataset and its poisoned version. To ensure generalization ability, the second stage employs a carefully designed training strategy, combining logits alignment and batch norm freezing. We evaluate TrojanTime using five types of triggers across four TSC architectures in UCR benchmark datasets from diverse domains. The results demonstrate the effectiveness of TrojanTime in executing backdoor attacks while maintaining clean accuracy. Finally, to mitigate this threat, we propose a defensive unlearning strategy that effectively reduces the ASR while preserving clean accuracy.


Calibrating Deep Neural Network using Euclidean Distance

arXiv.org Machine Learning

Uncertainty is a fundamental aspect of real-world scenarios, where perfect information is rarely available. Humans naturally develop complex internal models to navigate incomplete data and effectively respond to unforeseen or partially observed events. In machine learning, Focal Loss is commonly used to reduce misclassification rates by emphasizing hard-to-classify samples. However, it does not guarantee well-calibrated predicted probabilities and may result in models that are overconfident or underconfident. High calibration error indicates a misalignment between predicted probabilities and actual outcomes, affecting model reliability. This research introduces a novel loss function called Focal Calibration Loss (FCL), designed to improve probability calibration while retaining the advantages of Focal Loss in handling difficult samples. By minimizing the Euclidean norm through a strictly proper loss, FCL penalizes the instance-wise calibration error and constrains bounds. We provide theoretical validation for proposed method and apply it to calibrate CheXNet for potential deployment in web-based health-care systems. Extensive evaluations on various models and datasets demonstrate that our method achieves SOTA performance in both calibration and accuracy metrics.