Goto

Collaborating Authors

 Dong, Bo


CLDG: Contrastive Learning on Dynamic Graphs

arXiv.org Artificial Intelligence

The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph contrastive learning. It constructs self-supervised signals by maximizing the mutual information between the statistic graph's augmentation views. However, the semantics and labels may change within the augmentation process, causing a significant performance drop in downstream tasks. This drawback becomes greatly magnified on dynamic graphs. To address this problem, we designed a simple yet effective framework named CLDG. Firstly, we elaborate that dynamic graphs have temporal translation invariance at different levels. Then, we proposed a sampling layer to extract the temporally-persistent signals. It will encourage the node to maintain consistent local and global representations, i.e., temporal translation invariance under the timespan views. The extensive experiments demonstrate the effectiveness and efficiency of the method on seven datasets by outperforming eight unsupervised state-of-the-art baselines and showing competitiveness against four semi-supervised methods. Compared with the existing dynamic graph method, the number of model parameters and training time is reduced by an average of 2,001.86 times and 130.31 times on seven datasets, respectively.


Training a Label-Noise-Resistant GNN with Reduced Complexity

arXiv.org Artificial Intelligence

--Graph Neural Networks (GNNs) have been widely employed for semi-supervised node classification tasks on graphs. However, the performance of GNNs is significantly affected by label noise, that is, a small amount of incorrectly labeled nodes can substantially misguide model training. Mainstream solutions define node classification with label noise (NCLN) as a reliable labeling task, often introducing node similarity with quadratic computational complexity to more accurately assess label reliability. T o this end, in this paper, we introduce the Label Ensemble Graph Neural Network (LEGNN), a lower complexity method for robust GNNs training against label noise. Specifically, LEGNN conducts a two-step process: bootstrapping neighboring contexts and robust learning with gathered multiple labels. In the former step, we apply random neighbor masks for each node and gather the predicted labels as a high-probability label set. This mitigates the impact of inaccurately labeled neighbors and diversifies the label set. In the latter step, we utilize a partial label learning based strategy to aggregate the high-probability label information for model training. Additionally, we symmetrically gather a low-probability label set to counteract potential noise from the bootstrapped high-probability label set. Extensive experiments on six datasets demonstrate that LEGNN achieves outstanding performance while ensuring efficiency. Moreover, it exhibits good scalability on dataset with over one hundred thousand nodes and one million edges. Graph, as a ubiquitous data form in real world, can represent a variety of relational structures, such as social networks [1, 2], transportation systems [3, 4], taxpayer network [5, 6] and many more. Graph Neural Networks (GNNs) have emerged as powerful tools for capturing and analyzing graph-structured data, gaining significant attention in recent years [7, 8, 3, 9, 10, 11, 12, 13, 14, 15]. Figure 1: A comparison between our proposed label ensemble method and existing reliable labeling methods. The colors of the nodes represent their labels, while the symbols " " and " " indicate whether the nodes are correctly or incorrectly labeled, respectively.


GraphPub: Generation of Differential Privacy Graph with High Availability

arXiv.org Artificial Intelligence

In recent years, with the rapid development of graph neural networks (GNN), more and more graph datasets have been published for GNN tasks. However, when an upstream data owner publishes graph data, there are often many privacy concerns, because many real-world graph data contain sensitive information like person's friend list. Differential privacy (DP) is a common method to protect privacy, but due to the complex topological structure of graph data, applying DP on graphs often affects the message passing and aggregation of GNN models, leading to a decrease in model accuracy. In this paper, we propose a novel graph edge protection framework, graph publisher (GraphPub), which can protect graph topology while ensuring that the availability of data is basically unchanged. Through reverse learning and the encoder-decoder mechanism, we search for some false edges that do not have a large negative impact on the aggregation of node features, and use them to replace some real edges. The modified graph will be published, which is difficult to distinguish between real and false data. Sufficient experiments prove that our framework achieves model accuracy close to the original graph with an extremely low privacy budget.


Efficient LLM Inference on CPUs

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable performance and tremendous potential across a wide range of tasks. However, deploying these models has been challenging due to the astronomical amount of model parameters, which requires a demand for large memory capacity and high memory bandwidth. In this paper, we propose an effective approach that can make the deployment of LLMs more efficiently. We support an automatic INT4 weight-only quantization flow and design a special LLM runtime with highly-optimized kernels to accelerate the LLM inference on CPUs. We demonstrate the general applicability of our approach on popular LLMs including Llama2, Llama, GPT-NeoX, and showcase the extreme inference efficiency on CPUs.


Homography Initialization and Dynamic Weighting Algorithm Based on a Downward-Looking Camera and IMU

arXiv.org Artificial Intelligence

In recent years, the technology in visual-inertial odometry (VIO) has matured considerably and has been widely used in many applications. However, we still encounter challenges when applying VIO to a micro air vehicle (MAV) equipped with a downward-looking camera. Specifically, VIO cannot compute the correct initialization results during take-off and the cumulative drift is large when the MAV is flying in the air. To overcome these problems, we propose a homographybased initialization method, which utilizes the fact that the features detected by the downward-looking camera during take-off are approximately on the same plane. Then we introduce the prior normal vector and motion field to make states more accurate. In addition, to deal with the cumulative drift, a strategy for dynamically weighting visual residuals is proposed. Finally, we evaluate our method on the collected real-world datasets. The results demonstrate that our system can be successfully initialized no matter how the MAV takes off and the positioning errors are also greatly improved.


Compressing Context to Enhance Inference Efficiency of Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM's fixed context length. This paper proposes a method called Selective Context that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50\% reduction in context cost, resulting in a 36\% reduction in inference memory usage and a 32\% reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance.


Event-Enhanced Multi-Modal Spiking Neural Network for Dynamic Obstacle Avoidance

arXiv.org Artificial Intelligence

Autonomous obstacle avoidance is of vital importance for an intelligent agent such as a mobile robot to navigate in its environment. Existing state-of-the-art methods train a spiking neural network (SNN) with deep reinforcement learning (DRL) to achieve energy-efficient and fast inference speed in complex/unknown scenes. These methods typically assume that the environment is static while the obstacles in real-world scenes are often dynamic. The movement of obstacles increases the complexity of the environment and poses a great challenge to the existing methods. In this work, we approach robust dynamic obstacle avoidance twofold. First, we introduce the neuromorphic vision sensor (i.e., event camera) to provide motion cues complementary to the traditional Laser depth data for handling dynamic obstacles. Second, we develop an DRL-based event-enhanced multimodal spiking actor network (EEM-SAN) that extracts information from motion events data via unsupervised representation learning and fuses Laser and event camera data with learnable thresholding. Experiments demonstrate that our EEM-SAN outperforms state-of-the-art obstacle avoidance methods by a significant margin, especially for dynamic obstacle avoidance.


An Efficient Sparse Inference Software Accelerator for Transformer-based Language Models on CPUs

arXiv.org Artificial Intelligence

In recent years, Transformer-based language models have become the standard approach for natural language processing tasks. However, stringent throughput and latency requirements in industrial applications are limiting their adoption. To mitigate the gap, model compression techniques such as structured pruning are being used to improve inference efficiency. However, most existing neural network inference runtimes lack adequate support for structured sparsity. In this paper, we propose an efficient sparse deep learning inference software stack for Transformer-based language models where the weights are pruned with constant block size. Our sparse software accelerator leverages Intel Deep Learning Boost to maximize the performance of sparse matrix - dense matrix multiplication (commonly abbreviated as SpMM) on CPUs. Our SpMM kernel outperforms the existing sparse libraries (oneMKL, TVM, and LIBXSMM) by an order of magnitude on a wide range of GEMM shapes under 5 representative sparsity ratios (70%, 75%, 80%, 85%, 90%). Moreover, our SpMM kernel shows up to 5x speedup over dense GEMM kernel of oneDNN, a well-optimized dense library widely used in industry. We apply our sparse accelerator on widely-used Transformer-based language models including Bert-Mini, DistilBERT, Bert-Base, and BERT-Large. Our sparse inference software shows up to 1.5x speedup over Neural Magic's Deepsparse under same configurations on Xeon on Amazon Web Services under proxy production latency constraints. We also compare our solution with two framework-based inference solutions, ONNX Runtime and PyTorch, and demonstrate up to 37x speedup over ONNX Runtime and 345x over PyTorch on Xeon under the latency constraints. All the source code is publicly available on Github: https://github.com/intel/intel-extension-for-transformers.


Biologically Inspired Dynamic Thresholds for Spiking Neural Networks

arXiv.org Artificial Intelligence

The dynamic membrane potential threshold, as one of the essential properties of a biological neuron, is a spontaneous regulation mechanism that maintains neuronal homeostasis, i.e., the constant overall spiking firing rate of a neuron. As such, the neuron firing rate is regulated by a dynamic spiking threshold, which has been extensively studied in biology. Existing work in the machine learning community does not employ bioinspired spiking threshold schemes. This work aims at bridging this gap by introducing a novel bioinspired dynamic energy-temporal threshold (BDETT) scheme for spiking neural networks (SNNs). The proposed BDETT scheme mirrors two bioplausible observations: a dynamic threshold has 1) a positive correlation with the average membrane potential and 2) a negative correlation with the preceding rate of depolarization. We validate the effectiveness of the proposed BDETT on robot obstacle avoidance and continuous control tasks under both normal conditions and various degraded conditions, including noisy observations, weights, and dynamic environments. We find that the BDETT outperforms existing static and heuristic threshold approaches by significant margins in all tested conditions, and we confirm that the proposed bioinspired dynamic threshold scheme offers homeostasis to SNNs in complex real-world tasks.


APAM: Adaptive Pre-training and Adaptive Meta Learning in Language Model for Noisy Labels and Long-tailed Learning

arXiv.org Artificial Intelligence

Practical natural language processing (NLP) tasks are commonly long-tailed with noisy labels. Those problems challenge the generalization and robustness of complex models such as Deep Neural Networks (DNNs). Some commonly used resampling techniques, such as oversampling or undersampling, could easily lead to overfitting. It is growing popular to learn the data weights leveraging a small amount of metadata. Besides, recent studies have shown the advantages of self-supervised pre-training, particularly to the under-represented data. In this work, we propose a general framework to handle the problem of both long-tail and noisy labels. The model is adapted to the domain of problems in a contrastive learning manner. The re-weighting module is a feed-forward network that learns explicit weighting functions and adapts weights according to metadata. The framework further adapts weights of terms in the loss function through a combination of the polynomial expansion of cross-entropy loss and focal loss. Our extensive experiments show that the proposed framework consistently outperforms baseline methods. Lastly, our sensitive analysis emphasizes the capability of the proposed framework to handle the long-tailed problem and mitigate the negative impact of noisy labels.